Topological Hochschild homology, truncated Brown-Peterson
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ABsTRrRACT. In this article, we study the topological Hochschild homology of
Es-forms of truncated Brown-Peterson spectra, taken relative to certain Thom
spectra X (p™) (introduced by Ravenel and used by Devinatz-Hopkins-Smith
in the proof of the nilpotence theorem). We prove analogues of Bokstedt’s
calculations THH(F,) ~ F,[Q2S3] and THH(Z,) ~ Z,[Q253(3)]. We also con-
struct a topological analogue of the Sen operator of Bhatt-Lurie-Drinfeld, and
study a higher chromatic extension. The behavior of these “topological Sen
operators” is dictated by differentials in the Serre spectral sequence for Cohen-
Moore-Neisendorfer fibrations.
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1. Introduction

1.1. Summary. Fix a prime p. A fundamental calculation of Bokstedt’s
|IB685] says that 7w, THH(F,) is isomorphic to a polynomial ring F,[o] with |o| = 2.
Recent work of Hahn-Wilson shows that this polynomiality phenomenon persists at
higher heights, provided one works relative to MU instead of the sphere. Namely,
[HW20, Theorem E] states that if BP(n) is an Es-form of the truncated Brown-
Peterson spectrum, then 7, THH(BP(n) /MU) is a polynomial algebra over w,.BP (n)
on generators in even degree. Moreover, the first such generator is the double sus-
pension 02(vy,11)-

In this article, we will show that the “polynomial THH” phenomenon persists
if one instead considers THH relative to the Ravenel spectra X (p™), introduced in
[Rav84] and used by [DHS88]| in the proof of the nilpotence theorem. Motivated
by [Dev23al, the thesis of this article is that many statements involving the study
of Fp,- or Z,-algebras relative to the sphere spectrum admit natural generalizations
when studying BP(n — 1)- or BP(n)-algebras relative to X (p™). Many of the results
presented here were motivated by the perspective that there should be a chromatic
analogue of integral p-adic Hodge theory (where p is replaced by the chromatic
element v,,; see Figure H

The Ef-ring X (p") is the Thom spectrum of the Eff-map QSU(p") — QSU ~
BU, so that X (1) = S? and X (co) = MU. Just as MUy, splits as a direct sum of
shifts of BP, the spectrum X (p™)(, splits into a direct sum of shifts of an E;-ring
denote(ﬂ T(n). If € is a left X (p™)-linear co-category, then [DHL™'23, Corollary
2.9 and Corollary 3.7] ensures that it makes sense to define the relative topolog-
ical Hochschild homology THH(C/X (p™)), and furthermore that THH(C/X (p™))
admits an S'-action[]

Our main result is an analogue of Bokstedt’s calculation. If R is a ring
spectrum, let R[BA,] denote the free R-module whose homotopy groups are iso-
morphic to a divided power algebra 7. (R)(y;|1 <i < p" — 1,i # p*) where |y;| =
2jE| Morally, R[BA,] is the R-chains on the “classifying space of []_, SU(p" —
1)/SU(p*~ 1) so, if X is another space, we will write R[BA,, x X] to denote
R[BA,] ®r R[X]. Fix an Es-form of the truncated Brown-Peterson spectrum
BP(n — 1) (which exists by [HW20, Theorem A]). Motivated by the results of
[Dev23al, and using the calculations of [ARO5), BR05|, we show:

Theorem (Theorem a)). There 1s a p-complete equivalence
THH(BP(n — 1)/X (p")) ~ BP(n — 1)[BA, x Q5%"+]

I1d also like to direct the reader to https://www.royalacademy.org.uk/art-artists/
work-of-art/prismatic-colour-wheel; but I hope our Figure is more mathematically
informative!

2This is not the telescope of a vn-self map! See Warning [2.1.6

3We warn the reader that even if € admits the structure of a monoidal oco-category,
THH(C/X (p™)) rarely inherits any multiplicative structure from €, since X (p™) does not admit
the structure of an Es-ring (see Remark [2.1.3).

4The contribution BA,, plays essentially no practical/meaningful role in this article. Its
appearance in the equivalences below can be removed if T'(n) C X (p™)(,) admits the structure of
an Eg-algebra. We strongly believe this to be possible (enough to state it as Conjecture ),
so we suggest the reader ignore BA, — and simultaneously replace X (p™) by T'(n) — on a first
pass.


https://www.royalacademy.org.uk/art-artists/work-of-art/prismatic-colour-wheel
https://www.royalacademy.org.uk/art-artists/work-of-art/prismatic-colour-wheel

4 S. K. DEVALAPURKAR

of BP(n — 1)-modules; in particular, there is a p-complete isomorphism
m THH(BP(n — 1)/ X (p")) ~ 7. BP(n — 1)[BA,][0x],

where 0,, € maun THH(BP(n — 1)/ X (p™)) is 0 (vy).

Moreover, there are p-complete isomorphisms

mTC™ (BP(n — 1)/ X (p")) = m(BP(n)[BAL])[A][0n]/ (0nh — vn),
m.TP(BP(n — 1)/X (p")) = m.(BP(n)'*' [BA,)),

where h € ©_yBP(n)"S" . Under the map TP(BP(n — 1)/ X (p")) — TP(BP(n — 1)/MU),
the image of v, € mopn _oTP(BP(n — 1)/ X (p™)) can be identified with the image of
vy € ﬁgpn,gMUtSl under the map MU™S" — TP(BP(n — 1)/MU).
Remark 1.1.1. If T(n) C X (p")(,) admits the structure of an Ef-algebra (Conjec-
ture[2.1.9)), then Theorem would give the cleaner statements that THH(BP(n — 1) /T'(n)) =~
BP(n — 1)[Q25%"+1], and that 7, TP(BP(n — 1)/T(n)) = 7,BP(n)'S". The map
m THH(BP{(n — 1)/T(n)) — = THH(BP(n — 1) /MU) is injective, and exhibits the
source as the submodule 7,BP(n — 1)[0%(v,)] of 7, THH(BP(n — 1)/MU).

Theorem implies the following result, which, for n = 0, is a very special
case of the main result of [PV19]:
Corollary (Proposition i . Let R = BP(n)[ZjZO] be a flat polynomial ring
over BP(n), viewed as a ZJZO-gmded ES-BP(n)-algebra. Then there is a p-complete
isomorphism of ZjZO-gmded modules equipped with a map from mBP(nVSl [BA,] =
T TP(BP{n — 1)/ X (p")):

7 TPE((R/u,) /X (p")) = 7, HPS"(R/BP(n))[BAy].

Here, the superscript gr denotes the Tate construction taken in Zéo—graded spectra.

Remark 1.1.2. Theorem quickly implies redshift for K(BP{(n — 1)) (see
Corollary . When n = 0, the first part of Theorem a) recovers Bokst-
edt’s calculation of THH(F,), since BP(—1) = F,, and X(0) = S°. When p = 2,
the statement of Theorem can be simplified using [Dev23al Remark 3.1.9];
for instance, we obtain the following additive equivalences and isomorphisms: for
n = 1, we have

THH(Zo2/T(1)) = Zs[o*(01)], 7 TP(Z2/T (1))} =~ m.(ku'S")3.
Since tmf;(3) is a form of BP(2) by [LN14], for n = 2, we have
THH (ku} /T(2)) = kuj [0 (v2)], m TP(kuj /T(2))5 = m,(tmfy (3)*)3.
We also prove an analogue of Bokstedt’s calculation [B685| of THH(Z,,):
Theorem (Theorem [2.2.4b)). There is an equivalence of BP(n)-modules

A

THH(BP(n)/X (p"))) = BP(n)[BAJ) @ | @ =% 'BP(n)[BA,)/pj

ji>1
/= p

Moreover, mypni1_sTC™ (BP(n)/X (p")), detects the class 0, € Topnt1_3X (p")
from [Dev23al Lemma 3.1.12].
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BP(n)
_ 0 .
n2 BP(2)/S = BP(2)/BP
BP(1)/S°
n=1 j/So : ﬁ BP<1>/BP
A~
TP, :
! Mod w7, is submodule gen. by (9{’k
n=0 ZP/S0 % ZP/BP
TP,crys}
! Mod p, is submodule gen. by oPF
n—=—1 Fp/SO ﬁFID/BP

FIGURE 1. Heuristic picture suggested by this article, where we have assumed for
simplicity that T'(m) admits the structure of a framed Es-ring.

e The spectra sandwiched between diagonal lines of slope 1 (partitioned by a red
line) display similar structural behaviour. Here, A and B are studied in [MahT79]
(where A is denoted X5), [Dev19l Construction 3.1], and [HMO02].

e The horizontal double arrows indicate the topological Sen operators of Theo-
rem i.e., the descent spectral sequence for the map THH(—/T(n — 1)) —
THH(—/T(n)). This is closely related to the Cohen-Moore-Neisendorfer map
Q282" g2

e The (slightly offset) vertical dashed lines going from (n,n — 1) to (n,n) indi-
cate the p-completed isomorphism 7. TP(BP(n —1)/T(n)) = 7T*BP<n>tS1 of The-
orem [2.2.4f The other vertical arrow from (0,0) to (0,1) is the identification of
THH(Z,) with 750(j*4/?), which will appear in future work with Arpon Raksit.
(Here, j is the connective complex image-of-J spectrum.) This equivalence is al-
ready predicted by the pioneering work of Bokstedt-Madsen in [BM94].

e The downwards-sloping blue arrows indicate that THH(BP(n)/T(n + 1)) /vy, is
a submodule of THH(BP(n — 1)/T(n)) generated by 62* for k > 0. See Exam-
ple Remark and Example for an explanation of this phenomenon
using the EHP sequence.

e The columns continue infinitely far out (i.e., THH(BP(n — 1) /T'(m)) for m > n).
However, the drawing is truncated because these terms do not detect any more
information than THH(BP(n — 1) /T'(n)) itself. The “exception” is the final column,
where the descent from THH(BP(n — 1)/BP) to THH(BP(n — 1)) can be described
algebro-geometrically via the p-typical Witt ring scheme.

T(m)
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Remark 1.1.3. If one replaces X (p™) in the left-hand side of Theorem [2.2.4[b)
with X (p"*! — 1), the only change to the right-hand side is that BA,, is replaced
by BA,41. Let us mention the following mild variant of Theorem [2.2.4] (see ({d))):
the Fplvn_j, -+ ,vp_1)-module m, THH(BP(n — 1)/X(’))/(p, -+ ,vp—1—;) is iso-
morphic to the tensor product of BP(n — 1)[QS?*" 1 x BA;]/(p, -+ ,Up_1_;)« with
an exterior algebra on classes A\jq1,- -, Ap, where |A,,| = 2p™ — 1. We also prove
an analogue of Theorem for ko and tmf in Appendix [A] For example, if the
spectra A and B [Dev23al Section 3] lift to Eff-rings, there are 2-complete equiv-
alences

THH(ko/A) ~ ko & | D E¥ 'ko/2j | ,
jz1

THH(tmf/B) ~ tmf & | @) ='% " tmf/2;
jz1

Remark 1.1.4. If Conjecture (or rather, a weaker version which only asks
that T'(n) admit the structure of an Eff-ring) were true, then the contribution
of BA, could be eliminated from Theorem [2.2.4(b): namely, there would be a
p-complete equivalence

THH(BP(n)/T(n)) ~ BP(n) & B £%*"" ~1BP(n) /pj.
j=1

We warn the reader that all the equivalences proved above are only additive,
so one cannot directly use them to study the stacks associated to THH (defined
via the even filtration of [HRW22|). As a perhaps more digestible example of
this phenomenon (see Remark , note that since F5 is the Thom spectrum of
an Ej-map U(2) — BGL;(ku), there is an equivalence HH(F3/ku) ~ F5[BU(2)];
however, this cannot be upgraded to an equivalence of Fy-algebras, since the right-
hand side is not even obviously a ring!

In Example £:2.2] Remark [£.2.4] and Example [£.2.6] we use the EHP se-
quence to explain the similarity in the calculation of THH(BP(n)/X (p"*1)) and
THH(BP(n — 1)/ X (p™)) given by Theorem [2.2.4 This discussion in fact yields
the following more general structural uniformity in the truncated Brown-Peterson
spectra (see Figure 1| for a visual illustration):

Slogan 1.1.5 (Remark and Remarkfor precise statements). If n > j—1,
the structure of BP(n) as an E;-X (p’)-algebra (i.e., THH(BP(n)/X(p?))) mirrors
the structure of BP(n — 1) as an E;-X (p’~1)-algebra (i.e., THH(BP(n — 1)/ X (p’~1))),
which in turn mirrors the structure of BP(n — j) as an E;-algebra over the sphere
(i.e., THH(BP(n — j))).

Let € be a left X (p™)-linear co-category. Then, one can try to understand the
descent spectral sequence from THH relative to X (p™) to THH relative to X (p™—1).
In order to understand this, we use a variant of [Dev23al Conjecture E]ﬁ

Conjecture (Conjecture[3.1.2). Let 33(X(n)) = X (n)"SU(M) denote the Es-center
of X(n). Then:

5In a previous version of this article, I had mistakenly omitted this conjecture, but it is in
fact necessary. My apologies to the reader!
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o X(n)"SYM) admits the structure of an BEs x U(1)-algebra such that the
unit map X (n)"SY) — X(n) is a map of E-algebras and n = 0 €
(X () SV

o the class xn € man—1X(n) lifts to a class Xn € 7T2n_1X(n)hSU(n) such that
the Thom spectrum R(n-+1) of the resulting map S+ — B2GLy (X (n)"SVU(M)
admits the structure of an Eq-X (n)"SV(M™ _algebra;

o the X (p™ —1)-linear co-category € = LModgp(,—1)y admits a lift to R(p").

Theorem (Theorem [3.1.4). Assume the preceding conjecture. If C is an X (p")-
linear co-category which admits a lift to an X (p™ — l)hSU(pnfl)—linear oo-category,
there is a map O¢ : =" THH(C/X (p")) — THH(C/X (p")) such that there is a
cofiber sequence

(1) THH(C/X (p" — 1)) 4 THH(€/X (p")) 2% $2" THH(C/X (p")),

where the map ¢ is S -equivariant, and the cofiber of v is (at least nonequivariantly)

identified with ¥2*" THH(C/X (p™)).

Remark 1.1.6. Motivated by [BL22al, Dri22|, we dub the map ©¢ the topological
Sen operator; its construction is motivated by the work of [Dev23al] relating BP(n)
to Cohen-Moore-Neisendorfer type fiber sequences . When € = LModgp,—1),
Theorem [2.2.4) implies that the map © sends

O:607 s jppi—t.
When n = 1, it therefore behaves like the Sen operator on the diffracted Hodge
complex of Z, which computes z {*}.

Remark 1.1.7. In Appendix [A| (see Remark , we describe a quaternionic
analogue of this picture, obtained by replacing X (n) by the Thom spectrum Xgg(n)
of the tautological symplectic bundle over 2(SU(2n)/Sp(n)) obtained via the map
Q(SU(2n)/Sp(n)) — Q(SU/Sp) ~ BSp given by Bott periodicity.

In Construction we define an Ef-ring J(p) which admits an Ef-map
J(p) — X(p) such that THH(T(1)/J(p)) ~ T(1)[Jp-1(S?)]. The underlying E;-
ring of J(p) is S[Z] = S[t*!] with |t| = 0, but they differ as Eff-rings. The raison
d’étre for J(p) is that THH(Z,/J(p)) is polynomial on a class = in degree 2 which
is a pth root of § € my, THH(Z,/X (p)). More precisely, there is an equivalence
THH(Z,/J(p)) ~ Z,[QS53] such that the map THH(Z,/J(p)) — THH(Z,/X (p))
is induced by Z,-chains of the Hopf map Q5% — QS?’*1. In Construction
we also construct two Ef-rings (as Thom spectra over QU(2) and QSpin(4)) which
play the role of J(p) for ku when p = 2.

We construct the following cofiber sequence analogous to for any J(p)-linear
oo-category C:

THH(C) & THH(C/J(p)) O, Y2THH(C/J(p)).

This cofiber sequence does mot rely on an analogue of Conjecture It turns
out that upon reducing the above cofiber sequence mod p, one obtains the following
important example:

Example 1.1.8. If € is a Z,-linear co-category, there is a cofiber sequence (see

Variant [3.1.10))
2) THH(C) ®z, F, - THH(C @z, F,) 2 S2THH(C ®z, F,).



8 S. K. DEVALAPURKAR

When € = Modgz,, the effect of the map ©" on homotopy is given by the map
F,[o] — ¥?F,[o] which sends 07 + jo’/~!. There is also a cofiber sequence

(3)  THH(C)'Z/? @y F, % HP(C @z, F,/F,) <5 HP(C @y, F,/F,).

If ¢ = Modpg, for an animated Z,-algebra R, we expect the maps in and to
respect the motivic filtrations. Taking gr? . [—2¢] would then produce the following
cofiber sequences involving the associated graded pieces of the Nygaard filtration

on the prismatic cohomologies of R and R/p:
(N R)/p = F{™dR gy, — FL2VdR () r,»
1/P = ARryp) i, = AR(ayp)r,

Such cofiber sequences on Hodge-Tate cohomology do indeed exist, and can be con-
structed purely algebraically using the methods of [BM22] and [BL22al, Proposi-

tion 6.4.8]; see and (20).

We also show by explicit calculation:

Proposition (Example and Proposition for precise statements). There
is an isomorphism m, TP(Z,[t]/ X (p)) = m.HP(BP(1)[t]/BP(1)).

Furthermore, the map TP® (BP(n — 1)[t]/ X (p")) — TP(BP{n — 1)/ X (p™)) is
an equivalence after K (n)-localization, and Conjecture implies that (up to a
Nygaard-type completion) Ly, TP(—/X (p")) is Al-invariant.

We also have:

Conjecture (Conjecture [3.1.13 and Conjecture [3.3.5)). Let R be an animated Z,,-

algebra, and let Fionjﬁg denote the conjugate-filtered (p-completed) diffracted Hodge
complex of [BL22a, Construction 4.7.1]. Then THH(R/J(p)) admits a motivic

filtration such that gri THH(R/J(p)) ~ (Ffonjﬁg)[%], and such that the map

mot

©% : THH(R/J(p)) - ZQTHH(RA/J(p)) respects the motivic filtration and induces
the map © + i : FSONQY — Fooig? on grf

mot -

Similarly, THH(R/X (p)) admits a motivic filtration such that gr’,  THH(R/X (p)) ~

mot
(F;fnlﬂﬁ)ppi] ®gr RBSU(p — 1)]. Moreover, TP(R/X (p)) admits a motivic filtra-
tion F TP(R/X(p)) such that grl TP(R/X(p)) ~ AR/me [2i] ®r €, where

AR/me is the Nygaard completion of pQg.

In Section |3} we supplement Conjecture [3.1.13| with some examples (such as R
being a p-complete perfectoid ring, R = Z/p™ for odd p, R being a complete DVR
of mixed characteristic (0, p), and R = Z,[t]).

Remark 1.1.9. For the case R = Z/p™, we give “two” calculations of the diffracted

Hodge complex ﬁg Jpn> ONE Uses abstract properties of the diffracted Hodge complex

(and was explained to us by Bhatt), and the other (provided in Appendix [B]) is
via concrete calculations in the ring W(Z,). In particular, in Corollary [3.2.15 we
refine the calculation of [BL22b, Example 5.15] to show that there is an equivalence

WCartg/Tpn =~ G!/G! of stacks over Z/p".

In Section [3:4] we also study an analogue of the Segal conjecture for THH
relative to J(p) and T'(n). One interesting consequence (Proposition [3.4.7) is that
if R is a p-torsionfree discrete commutative ring such that R/p is regular Noetherian
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and LQ} = 0 for n > 0, then [BL22al Remark 4.7.4] and Conjecture imply
that R satisfies a version of the Segal conjecture for THH relative to J(p).

In Proposition [3.5.3] we prove an analogue of the Cartier isomorphism in
Hochschild homology for a flat polynomial algebra over any Es-ring, and show that
it specializes to homotopical analogues of several known examples of the Cartier
isomorphism. (This is quite likely well-known to some experts, but we could not
find a source.)

Proposition (Proposition [3.5.3). Let R be an Es-ring. Then there is a S'-
equivariant map € : HH(R'2/?[t]/ R*%/P) — HH(R[t]/R)*%/P sending t + t?, where

S acts on HH(R][t]/R)"%/? via the residual S*/p,-action, and on HH(R'4/?[t]/ RYZ/P)

via the diagonal action on Hochschild homology and residual S* / p,-action on RZ/v,

Ift is given weight 1, then € induces an S*-equivariant equivalence HH(R'/P [t}/th/”)thm —
(HH(R[t]/R)wi<mp)'2/? of graded R*%/P-modules.

In Section [@] we describe the topological Sen operator from the perspective
of the moduli stack Mpg of formal groups. We begin by describing an algebraic
analogue of THH. This is given by an Adams-Novikov analogue of the Bokstedt
spectral sequence: if R is a p-local homotopy commutative ring such that MU, (R) is
concentrated in even degrees, one can define a stack Mz whose coherent cohomology
is the Es-page of the Adams-Novikov spectral sequence for R (see [DFHHI14l
Chapter 9]).

Proposition (Remark [4.1.5). If gr® THH(R) denotes the associated graded of the
even filtration of [HRW22| on THH(R), the natural map

colimpaop FX (R®s0*TH) 5 F* colimpor R®s°*! = F* THH(R)
is an equivalence, and the map R®s°*+t! — MU® R®**! is an eff cover in the sense
of [ HRW22|, then there is a spectral sequence:
T HH(Mp/Mpc) = m.gre, THH(R).
There is also an analogue for relative THH.

This spectral sequence behaves essentially like the Bokstedt spectral sequence in
most examples. In particular, if R — R’ is a map of p-local homotopy commutative
rings whose MU-homologies are concentrated in even degrees, then HH(Mp/Mg)
can be viewed as the “Adams-Novikov-Bokstedt associated graded” of grs, THH(R/R').
Motivated by this perspective, we describe an analogue of the topological Sen oper-
ator of Theorem as a Gauss-Manin connection on stacks related to Mpg (see

Example [4.1.10)):

Theorem (Example and Variant 4.1.12)). The stack M) is isomorphic to
the moduli stack of graded p-typical formal groups equipped with a p-typical coordi-
nate of order < p™. Moreover, the Adams-Novikov analogue of Theorem|[3.1.4] is a
fiber sequence

HH(X /My (,1)) = HHE(X/ M) 22 520" " HH(X /M)

associated to any stack X — Mgy, where ¥™" denotes a shift by homological
degree n and weight w.
Similarly, there is a fiber sequence

HH(X/Mpa) — HH(X/M () =22 S2THH(X /M ()
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associated to any stack X — M.

Remark 1.1.10. In Appendix [A| (Proposition and Remark , we also
study a quaternionic analogue of the above fiber sequence. This description crucially
relies on the twistor fibration CP?"~! — HP"~ !, which is given in coordinates by
the map [z1 : -+ : 29n] = [21 + 22] 1 -+ ¢ 2ap—1 + 22a]]-

1.2. Some complements. In Conjecture[2.2.19] we suggest that the identifi-
cation of m, TP(BP(n — 1)/ X (p")) can be extended to an equivalence TP(BP(n — 1)/ X (p")) ~

BP(n)'S"[BA,] of spectra:

Conjecture (Conjecture [2.2.19). The spectrum THH(BP(n — 1)/ X (p™)) admits
the structure of an S*-equivariant BP(n)-module, and the isomorphism 7, TP(BP(n — 1) /T (n)) =

m.BP(n)S" lifts to an equivalence of spectra TP(BP(n — 1)/T(n)) ~ BP(n)!S".

This discussion suggests viewing the pair (moBP(n)!S", (@)) as a higher chro-

matic analogue of the crystalline prism (Z,, (p)), where % is the complex orientation
of BP(n) and [p](h) is its p-series. Note that the pair (moBP(n)tS", (@)) has no
reason to naturally admit the structure of a prism.

Finally, it would be interesting to know whether Slogan can be used to
prove [Lee22| Conjecture 6.1]. A first step in this direction would be to show that
the topological Sen operators on THH(BP(n)/X (p’)), THH(BP(n — 1)/ X (p’~1)),
..., and THH(BP(n — j)) can also be matched up under the structural uniformity
of Slogan (Also see Remark [2.2.5])

This article suggests several directions in which the work presented here can
be extended; we have recorded these as Conjecture 2.1.9] Conjecture 2.2.8] Con-

jecture 2:2.19] Conjecture [2:3:22] Conjecture [3.1.13] the closely related Conjec-
ture 3:3:5, Conjecture [3:3:16] Conjecture [A:2] and Conjecture [A.8 We wish to

emphasize that, unlike [Dev23al Theorem A and Corollary B|, the main results
of this article are (mostly) unconditional, and can be viewed as evidence for the
conjectures presented here and in [Dev23al.

1.3. Acknowledgements. I'm grateful to Ben Antieau, Elden Elmanto, Jeremy
Hahn, Ishan Levy, Sasha Petrov, Arpon Raksit, and Andy Senger for conversations
on these and related topics; to Arpon Raksit for pointing out an error in Re-
mark [£.1.5} to Bhargav Bhatt for explaining Lemma [3.2.11] to me; to Akhil Mathew
for telling me about the cofiber sequence (20)); and to Andy Baker for a discussion
about the spectra Xg(n) from Definition In a previous version of this article,
I had given an erroneous construction of the “topological Sen operator”, which I
have now edited; my apologies! Some of the ideas in this article started during a
visit to Northwestern in March 2022, and I'm especially grateful to Ben Antieau
for the opportunity to visit; I would have never been able to understand [BL22al
— more generally, this subject area — were it not for him. I would also like to
thank my advisors Dennis Gaitsgory and Mike Hopkins for their advice, support,
and influence on me.
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2. Calculation of THH
2.1. Review of X(p").

Definition 2.1.1 (Ravenel, [Rav84l Section 3]). Let X (n) denote the Thom spec-

trum of the Eo-map QSU(n) C BU ER BGL;(S), where the first map arises from
Bott periodicity.

Example 2.1.2. The Es-ring X(1) is the sphere spectrum, while X (c0) is MU.
Since the map Q2SU(n) — BU is an equivalence in dimensions < 2n — 2, the same
is true for the map X (n) — MU; the first dimension in which X (n) has an element
in its homotopy which is not detected by MU is 2n — 1. In other words, writing
MU = Z[by,bo, - -] with |b;] = 24, the classes by, -+ ,b,—1 lift to X (n); there is
an inclusion Z[by, - ,b,—1] C m. X (n).

Remark 2.1.3. The Es-structure on X (n) does not extend to an Eg-structure
(see [Law19, Example 1.5.31]).

After localizing at a prime p, the spectrum MU splits as a wedge of suspensions
of BP; this splitting comes from the Quillen idempotent on MU. The same is true
of the X (n) spectra, as explained in [Rav86l Section 6.5]: a multiplicative map
X (n)) — X(n)(p) is determined by a polynomial f(z) = > g ;c,_1 @', with
ap = 1 and a; € ma;(X(n)(). One can use this to define a truncated form of the
Quillen idempotent €, on X (n)(,) (see [Hop84, Proposition 1.3.7]), and thereby
obtain a summand of X (n)(,). We summarize the necessary results in the following
theorem.

Theorem 2.1.4. Let n be such that p* < k < p"T1 — 1. Then X (k) splits as a
wedge of suspensions of the spectrum T'(n) = epn - X (") p)-

e T'(n) admits the structure of an Eq-ring such that the map T'(n) — X (p")
is a map of Eq-rings (see [BL21, Section 7.5]).

e The map T(n) — BP is an equivalence in dimensions < |vn41] — 2, so
there is an indecomposable element v; € . T(n) which maps to an inde-
composable element in 7,BP for 0 < i < n. In particular (by (a)), there
is an inclusion Zy[vy, -+ ,v,] C T (n).

e The map T(n) — BP induces the inclusion BP.T(n) = BP,[t1,-- ,t,] C
BP..(BP) on BP-homology, and the inclusions Fo[C3, - , (%] C Fa[¢?, (3, -
and F,[C1,-+,Cn] CFp[C1,Co, -+ ] on mod 2 and mod p homology, respec-
tively.

Example 2.1.5. The E;-ring T(1) is the Thom spectrum of the E;-map Q5%P~1 —
BGL;:(S) which detects a1 € mop_9BGL1(S) = mo,_3S on the bottom cell of
QS5?P=1. Since pa; = 0, a nullhomotopy of pa; defines a class v1 € map_2T(1).
Under the unit map T'(1) — BP, this class is sent to the eponymous class v €
WQP,QBP.

Warning 2.1.6. Unfortunately, Theorem leads to an egregious clash of no-
tation, since T'(n) is also often used to denote the telescope of a v,-self map of a
finite type n spectrum. In this article, we will only use T'(n) to mean the E;-ring
from Theorem We propose using the notation Tel(n) to denote the telescope
of a v,-self map.
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Notation 2.1.7. If R is a commutative ring, we write Ar(z) to denote an exterior
R-algebra on a class z, and R{zx) to denote a divided power R-algebra on a class x.
The notation v;(z) denotes the jth divided power of z, so that jly;(z) = 7. We
will also often write R{x) to denote the underlying R-module of R{x).

Construction 2.1.8. Define a space A,, by

n

A, =[[sue’ —n/sup,

=1

and let A; denote the ith term in this product. If R is a ring spectrum, write
R[QA,)] to denote the Ep-polynomial R-algebra R[z;|1 < i < p" — 1,i # p* — 1],
where |z;] = 2i. Let R[BA,] denote the 2-fold bar construction of the augmen-
tation R[QA,] — R, so that it is an Eg-R-coalgebra whose homotopy groups are
isomorphic to m.(R)(y;|1 <i < p" —1,i # p*) where |y;| = 2j. As mentioned in
the introduction, R[BA,] morally should be viewed as the R-chains on the “classi-
fying space of []}"_; SU(p" —1)/SU(p*~')”; to this end, if X is another space, we will
write R[BA, x X] to denote R[BA,] ®r R[X]; and if R is a discrete ring, we will
often write H,(BA,,; R) to denote m,R[BA,]. The factor R[BA,] will primarily
be an unfortunate annoyance in this article. Note that Ay = SU(p — 1). Then, we
have X (p") = T(n)[QA,] and X (p" — 1) = T'(n — 1)[Q2A,], so that

H*(X(Qn)v FQ) = F2[4127 e 7<2] ®Fp H* (QAn; Fp)a
H* (X(pn)a FP) = FP[Cl; e 7Cn] ®Fp H*(QA,“ F;D)v

and similarly for X (p™ — 1).

It is believed that T'(n) admits more structure (see also [AQ17] for some dis-
cussion):

Conjecture 2.1.9. The Q;-ring structure on T(n) extends to a framed Ex-ring
structure.

Remark 2.1.10. When p = 2, both X (2) = T(1) and 7'(2) admit the structure of
Ef-algebras by [DHL'23| Remark 3.8]: they are Thom spectra of U-bundles over
QSp(1) =~ 283 and QSp(2), respectively. These U-bundles are defined via double
loops of the the composite

BSp(n) — BSU(2n) — BSU ~ B3U.

Proposition 2.1.11 (JDHL™ 23| Corollary 2.9 and Corollary 3.7]). The Ey-structure
on X (n) refines to an Ef-structure.

Corollary 2.1.12. Let C be an X(n)-linear co-category. Then THH(C/X (n))
acquires the structure of an S*-equivariant spectrum with an S'-equivariant unit
map X (n) — THH(C/X (n)).

2.2. Computation of THH relative to X (p™). Unless explicitly stated oth-
erwise, all fiber sequences in this section (as well as the following sections) will be
localized at p.
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Recollection 2.2.1. There are isomorphisms
H,(BP(n —1);F3) 2 F5[(7, -+, (7 Cng1r ]
= H.(T(n); F2) @r, F2[(;l7 > n+1],
H.(BP(n —1);F,) = Ap, [75]] = n] @F, Fp[C1,¢2, -]
= H.(T(n);Fp) ©r, FplGli > n + 1] @r, A, [1;]7 > n],p > 2.
We note that the “Qo-Margolis homology” of H,(BP(n — 1); Fa) (i.e., the homology

of Sq' viewed as a differential acting on H, (BP(n — 1); Fy)) is precisely H, (T'(n); F3),
because Sq' is a derivation and Sq'(¢;) = Gy

Recollection 2.2.2. We need to recall some results from [HW20]. First, [HW20,
Theorem A] tells us that there exists an Ez-form of BP(n). Next, [HW20], Theorem
2.5.4] states that 7, THH(BP(n — 1)/MU) is isomorphic to a polynomial algebra
over T,BP(n — 1) on infinitely many generators, the first of which is denoted o2 (v,,).

The class 02(vy,) lives in degree 2p™. Finally, [HW20, Theorem 5.0.1] states that
there is an isomorphism 7, TC™ (BP(n — 1)/MU) ~ (7.,THH(BP(n — 1)/MU))[A]
ofZ,[vy,- - ,v,_1]-algebras. Moreover, under the map MU TC™ (BP(n — 1)/MU),
the class v, € m,MU"S" = (7. MU)[A] is sent to 0%(v, )h. In particular, 7, TC™ (BP(n — 1)/MU)
detects the classes p,v1,+ , V1,0, := 02(v,)h. Similarly, 7. TP(BP{n — 1)/MU)
detects the classes p,--- ,v, under the map MU' TP(BP(n — 1)/MU), and

7, THH(BP (n — 1)/MU)*%/P detects the classes p, - - - , v, 1 under the map MU*2/P —
THH(BP(n — 1)/MU)*2/P.

Notation 2.2.3. If R is a complex-oriented ring spectrum, we will write & to
denote the complex orientation of R, viewed as a class in m_y R™® ". The motivation
for this notation comes from geometric representation theory (in the case where R
is a Z,-algebra), where the complex orientation i € H*(CP>; R) plays the role of
a quantization parameter.

The main result of this section is the following analogue of Bokstedt’s theorem
on THH(F,) and THH(Z,).

Theorem 2.2.4. Fiz Es-forms of the truncated Brown-Peterson spectra BP(n — 1)
and BP(n). We have:
(a) There is a p-complete equivalence of BP(n — 1)-modules:

THH(BP(n — 1)/ X (p")) ~ BP(n — 1)|BA,, x Q82" +1].

Write 8,, € mopm THH(BP(n — 1)/ X (p™)) to denote the class correspond-
ing to the map E : S?" — QS?"+1. Under the S*-equivariant map
THH(BP(n — 1)/ X (p™)) — THH(BP(n — 1)/MU), the class 0, is sent to
the class o(v,) from Recollection There are also p-complete iso-
morphisms

. THH(BP(n — 1)/ X (p"))"%/™ = BP (n)'2/"[BA,.].,
T TC™ (BP(n — 1)/ X (p")) = BP(n)[BA,].[A][]
= BP(n)[BA].[][6n]/ (Onh — vn),
7. TP(BP(n — 1)/X (p")) = BP(n)*S' [BA,,].
= BP(n)[BA,]. (7).
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Here, the equation 0,h = v, is to be understood modulo decomposables.
These isomorphisms satisfy the following property: under the maps

TC™(BP(n—1)/X(p")) —» TC™ (BP(n — 1)/MU),
TP(BP(n —1)/X(p")) = TP(BP(n — 1)/MU),
the classes {v;}o<i<n on the left-hand side are sent to the eponymous
classes in the right-hand side (via Recollection .
(b) There is an equivalence of BP(n)-modules:
A
THH(BP(n)/X (p"))s = BP(n)[BA, 0@ | @S2 T1BP (n)[BA,] /por )+

i>1
7= p

In particular, there is an additive equivalence

THH(BP(n)/X (p™))/p = BP(n)[S*" "~ x Q82" 41 x BA,]/p.

n+1l

Moreover, Tgpnt1_3TC™ (BP(n)/ X (p™)); detects the class oy, € Topni1_3 X (p

from [Dev23al Lemma 3.1.12].

Remark 2.2.5. Let v|;,,) denote the regular sequence vj, - -+ , vy —1 in m.BP. Then
the argument used to prove Theorem in fact shows the following (somewhat
more general) result: for j < n, there is an isomorphism of BP(n — 1),-modules

(4)

T THH(BP(n — 1)/ X (p’)) /vo,n—j) = BP(n — 1)[BA;[0n] /vj0,n—j)®F, AR, (Aj11, -+

where |\;| = 2p’ — 1. When j = 0, recovers [ACH21 Proposition 2.9]. For
brevity, the discussion below only includes the cases j = n and j = n —1. Similarly,
using that T'(1) (resp. T(2)(2)) is a Thom spectrum over Q52"+ (resp. QSp(2)),
there are equivalences
THH(Z,)/p ~ F,[S*?~! x Q§%+1],
THH(ku)/(2, ) ~ F2[Sp(2) x Q5°].
Remark 2.2.6. If we write m,MU = Z[x1, 22, -] where |z;| = 2¢, and define
MU(n —1) = MU/(zp,Znt1,- ), then one can similarly prove an analogue of
Theorem with BP(n — 1) replaced by MU{(n — 1). Namely, if n is a power of
p, there is an equivalence
THH(MU(n — 1)/X (n))) ~ MU(n — 1)[Q25>" ]}

of MU(n — 1)-modules. There is also a p-complete isomorphism

. TP(MU(n — 1) /X (n));, = W*(MU<n>tS1);\.
We expect (see Conjecture [2.2.19 below) that this refines to a p-complete equiva-
lence TP(MU(n — 1)/X (n))) =~ (MU(n)*S").
Example 2.2.7. One can make Theorem [2.2.4(a) very explicit for Z, (note that
Theorem [2.2.4(b) for Z, is Bokstedt’s result). For instance,

mTC™(Zy/T(1)) = Zyp[0:][1][0]/ (16 = v1).

Let us view BP(1) as (kug)hF:, and let 8 € moku be the Bott class. Then,

mku'S = Z[3]((h)) is isomorphic to Z[g — 1]((h)), where ¢ = 1 + Sh lives in degree
0. If Z,[p] is as in [BL22al, Corollary 3.8.8|, then T BP(1)tS" = Z,[p](h). If we

")
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assume (for simplicity) that T(1) is an Eff-algebra, then replacing X (p) by T(1),
we obtain:

™ TP(Zy/T(1)) = Zy[p]) (R).
Here, F 5 acts on Z,[q — 1] as specified before [BL22al, Proposition 3.8.6]; indeed,
the Z)-action on Z,[q — 1] = 7r0(ku$)ts1 agrees with the action of the Adams

operations on T, (kuQ)tS 1, as one can check by calculating the Adams operations
on the p-completed complex K-theory of CP*. Indeed, if g € Z, then

1 o\ i1 1(+pR)97—1
9I(R) = = J—lpi — —
voh) ng‘:(j)ﬂ g B ’

so that
¥9(q) = ¢I(1 4 Bh) =1+ gBY?(h) = (1 + BR)? = ¢*.
Motivated by the preceding discussion and [DM84], we are led to conjecture:

Conjecture 2.2.8. There is an S'-equivariant equivalence THH(Z2/T(1)) =

tZ/2) tSU(2)

1
T>0(ko , as well as a 2-complete equivalence ko™ ~ ku

One can show that there is an S'-equivariant E;-ring map THH(Z2) — Tzo(kotz/z).

Remark 2.2.9. Recall from [Lurl5l Section 3.4] that there is an Ej-monoidal
functor sh : Sp® — Sp®" given by shearing: this functor sends M, — M,[2e].
Assume for simplicity that 7'(n) admits the structure of an Ef-algebra. From this
perspective, part of Theorem a) simply states that there is an equivalence of
ungraded BP(n — 1)-modules

THH(BP(n — 1)/T(n)) ~ sh(gr, BP(n)),

where sh(gr, BP(n)) denotes the shearing of the associated graded of the v,-adic
filtration Fj; BP(n) on BP(n).

An immediate implication of Theorem is the following.

Corollary 2.2.10 ([HW20, Corollary 5.0.2|). Fiz an Ez-form of the truncated
Brown-Peterson spectrum BP(n —1). We have Lk, K(BP(n —1)) # 0.

PRrROOF. There is a trace map K (BP(n — 1)) — TP(BP(n — 1)), which is a map
of Eo-rings. It therefore suffices to exhibit a nonzero module over L (,) TP(BP(n — 1))
— but we may take the module Ly, TP(BP(n —1)/X(p")), which is nonzero by
Theoremm(a). (In fact, Theorem 2.2.4(a) implies 7, L g (,) TP (BP(n — 1)/ X (p™))
is isomorphic to Zy[v1, -, Up_1, vfl](Ap,_” ’vnil)((h)) tensored with the Z,-homology

of BA,,.) O

Remark 2.2.11. It is easy to see that T(n) — BP(n) is a nilpotent extension.
This implies in particular that the following square is Cartesian by the Dundas-
Goodwillie-McCarthy theorem [DGM13| Theorem 7.2.2.1]:

K(T(n)) —— K(BP(n))

| l

TC(T(n)) — TC(BP(n)).
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Note that there is also a commutative square

TC(T(n)) —— TC(BP(n))

l l

TC™(T(n)) — TC™ (BP(n)),

and Theorem [2.2.4)and Theorem .1.4] give an inductive approach to calculating the
bottom row. One might therefore view the results of this article as a first step to
fully computing K (BP(n)). It would be very interesting to describe TC(T'(n)). For
example, we expect that for a general odd prime, the spectrum TP(7T'(1)) is closely
related to the Ej-quotient S/ a,,,,. (Here, a,/, € mapp—1)—1(5) is an element in
the a-family.)

However, more is true about the map T'(n) — BP(n): in fact, every element
in ker(m,T(n) — w.BP(n)) is nilpotent. To see this, first observe that this map
is a rational equivalence (indeed, it is an equivalence on @Qo-Margolis homology),
so fib(T'(n) — BP(n)) is torsion. Moreover, the map T'(n) — BP(n) is surjective
on homotopy (since it is a ring map, and the generators p,vy, - ,v, € 7T.BP(n)
lift to T'(n)), so that the map fib(T'(n) — BP(n)) — T'(n) induces an injection on
homotopy. If z € 7, T(n) is in the image of the map fib(T'(n) — BP(n)) — T(n),
then the image of x under the Hurewicz map m,7'(n) — MU,T'(n) is also torsion;
but MU, T(n) =2 MU,[t,- - ,t,] is torsion-free, so 2 must be nilpotent by the main
theorem of [DHS88E{ This is the desired claim.

More generally, recall [Dev23al Table 1], reproduced here as Table [1| (for the
definitions of these spectra, see [Mah79| for A, where it is denoted X5; [Dev19l
Construction 3.1] and [HMO2| for B; [MRSO01] for y(n); and [AQ19] for yz(n)).

Height 0 1 2 n n n
Base E;-ring R (8%, A B T(n) yn) yz(n)
Designer chromatic spectrum O(R) | Z, bo tmf BP(n) k(n) kz(n)

TABLE 1. The relation between R and ©(R) is analogous to the
relationship between T'(n) and BP(n).

In a manner similar to above, if R is an E;-ring as in the second line of Table[]
and O(R) is the associated designer spectrum, one can show that every element in
ker(m.R — m.©(R)) is nilpotent. It follows, for example, that there is a Cartesian
square

K(R) — K(©(R))

L

TC(R) — TC(O(R)).

Moreover, the proof of Theorem shows that were R to admit the structure
of an Eo-ring (which is generally not trueﬂ THH(O(R)/R) would be p-completely

6In some sense, this is a rather perverse argument, because the heart of the proof of the
nilpotence theorem relies crucially on showing that every element in ker(m«T(n) — m«BP(n)) is
nilpotent.

"For instance, y(n) cannot admit the structure of an Eo-ring, thanks to the Steinberger iden-
tity on the action of the Dyer-Lashof operation @1 on the dual Steenrod algebra (see [BMMS&6),
Theorems I11.2.2 and II1.2.3]).
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equivalent to R® @+, %27 " =1R /pj (where n is the “height” of R). If R = y(n)
or yz(n), this result is literally true by Theorem as long as one assumes
Conjectureand interprets THH(©(R)/R) to mean THH(BP (n) /T (n)) @7 ) R.
This does not cover the cases R = A, B, though; see Appendix [A] for further
discussion of these cases.

Remark 2.2.12. It is natural to ask whether Theorem [2:2.4] can be generalized
to describe THH(BP(n — 1)/ X (p™)) if m # n. For m < n, we do not know a full
description (after killing p,- -+, vy—m—1, see Remark ; but the techniques of
Theorem below provide a conceptual approach to addressing this question.
For m > n, the proof of Theorem easily implies that there is an additive
isomorphism

m.THHBP(n —1)/X (p™)) = m. THH(BP (n — 1)/ X (p")) ®Bp (n—1). BP(n = 1).(yslp" <i <p™)
BP(n — 1)[QS%" 1), (1|1 < i < p™ such that i # p* for 0 < k < n).

IR

Here, y; lives in degree 2i. For example, if n = 0, the divided power factor is
just BP{n —1),[BSU(p™)]. For instance, in the limit as m — oo, we recover the
statement that 7. THH(F,/MU) ~ F,[BSU x Q5%],.

Remark 2.2.13. Theorem 2.2.4(b) implies that

m. THH(BP(n — 1)/X (p"~1)) = BP(n — 1)[BA,l.&ED BP(n — 1)[BA,Ju—gjpn 1 /p"? P H!.

Jjz1

This can be compared to Theorem a) (we will study in this in further de-
tail in Section [3): the complexity of 7, THH(BP(n —1)/X(p" — 1)) compared to
7 THH(BP(n — 1) /X (p")) can be understood as arising via the descent spectral se-
quence for the map THH(BP(n — 1)/ X (p" —1)) — THH(BP(n — 1)/ X (p")). Note
that X (p") @ xpr_1) X(p") ~ X (p™)[Q2S8?" ~1]; using this, one can calculate using
methods similar to the proof of Theorem [2:2.4] that the Fs-page of the descent
spectral sequence is

By = m, THH(BP (n — 1)/ X (5"))[d)/¢,

where |e|] = 2p™ — 1. Calculating the differentials gives an “alternative” proof of

Theorem b) given Theorem [2.2.4(a); we will expand on this below in Re-
2.2.18

mark In fact, inductively studying THH of BP(n — 1) relative to X (p’) for
j < n gives a conceptual explanation for the families of differentials visible in the
calculations of m, THH(BP(n — 1)) in [ARO5| Section 8], [MS93|, and [AHL10];

see Theorem and Example

The proof of Theorem [2.2.4] will be broken into several components. Let us
begin by illustrating Theorem a) in the case n =0, 1.

PROOF OF THEOREM [2.2.4|(A) FOR n = 0,1. We need to show that there are
equivalences of spectra THH(F,) ~ F,[QS3] and THH(Z,/X (p)) ~ Z,[BSU(p —
1) x QS5?PF1]. The first equivalence is classical (see [B685]), so we argue the second
equivalence. There is a p-local map f : SU(p) — Q53(3) of spaces given by the
composite

SU(p) — SU(p)/SU(p — 1) ~ S?P~1 24 083(3).
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In [Dev23al, Remark 4.1.4], we described a fiber sequence (which was also known
to Toda in [Tod62])
(5) §2r=1 2L 083(3) — Q8T
This induces a fiber sequence of E;-spaces
QSU(p) L 0283(3) — SU(p — 1) x Q252P+1,

‘We now compute:

THH(Z,/X (p)) ~ THH(Z,) ®Trn(x ) X (p)

~ THH(Z,) ®z,0THH(X (p)) Lp-

The map X (p) — Z, is precisely the map induced by f : QSU(p) — Q253(3), so
the above tensor product is given by Z,[Q5?P*1 x BSU(p — 1)], as desired. O

Remark 2.2.14. Recall that the calculation THH(F,) ~ F,[QS3] follows from
[BCS10|] and the Hopkins-Mahowald theorem that F, is the Thom spectrum of
the Eo-map Q25°% — BGL;(S;)) which detects 1 —p € m1BGL1(S})) = Z on the
bottom cell of 9253, In [Dev23a, Corollary B], we prove (unconditionally!) that
Z, is the Thom spectrum of a map p : Q2S?PT!1 — BGL1(T(1)) which detects
v1 € map—1BGL1(T(1)) 2 ma,2T(1) on the bottom cell of 2251, (Unlike in the
classical Hopkins-Mahowald theorem, the map p is not an Eg-map.) This result
implies that Z,, is the Thom spectrum of a map SU(p—1)xQ?S**+1 — BGL (X (p)),
which can also be used to prove Theorem [2.2.4f(a) for n = 1.

We now turn to Theorem m(a) in the general case; the strategy is to compute
the homology of each of the spectra under consideration, and run the Adams spec-
tral sequence. In the case of THH'%/ ™ TC™, and TP, we will need the “continuous
homology” of [BRO5l, Equation 2.3].

Proposition 2.2.15. (a) There are isomorphisms

H.(BP(n — 1)[BA,]; F2)[0(Cnr1)] p=2,

H,(THH(BP(n — 1)/ X (p")); F,) = {H*(BP<n CWBALF ) o(m)] 0> 2

(b) There are isomorphisms

H.(BP(n)[BA,|;F2)[0(Cns2)] ©F, Ar,(0(CRi1)) =2,
H.(BP(n)[BAL]; Fy)[o(Tn11)] @, Ar, (0(Cri1)) P> 2.

Moreover, there is a Bockstein 8 : 0(Cov2) = 0((241) for p =2, and a
Bockstein 5 : 0(Tp+1) = 0(Cpy1) for p > 2.

H.(THH(BP(n)/ X (p")); Fp) = {

PrOOF. We begin by proving (a). We will use the Bokstedt spectral sequence,
which runs

B}, = HH,(H.(BP(n — 1);F,) /H.(X (p"); F,)) = H.(THH(BP(n — 1)/ X (p")); F,).

Since H. (X (p"); Fp) = Ho(T'(n); Fp)®r, Ho (QA,,; F,,) and the action of H. (X (p"); F)
on H.(BP(n —1);F,) factors through the map H.(X(p");F,) — H.(T(n);F,)
induced by the map crushing QA, to a point, we will ignore the contribution
from A,, in this discussion. The final contribution from these terms will only be
H.(BA,;F,). (The following may therefore be interpreted as a computation of
H.(THH(BP(n — 1)/T'(n)); Fp); however, since Conjecture is not known to
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be true, the spectrum THH(BP(n — 1)/T(n)) cannot yet be defined.) We will con-
tinue to write Ef* to denote the Hochschild homology groups of H.(BP(n — 1); F,)
over H,(T'(n); Fp).

Recall that if R is any discrete commutative ring, there are isomorphisms
m.HH(R[z]/R) ~ R[z] ® Ar(cx) and m.HH(Ag(z)) ~ Ar(xz) @ R{ox). It therefore
follows from Recollection [2.2.7] that we have

2 _ JH.(BP(n—1);F3) @r, Ap,(0Glj = n+1) p=2,

| H(BP(n — 1) Fy) ®F, Ar, (0G| = n+ 1) ®F, Fplorli = n) p>2.
The map THH(BP(n — 1)) — THH(BP(n — 1)/ X (p™)) induces a map from the
Bokstedt spectral sequence computing H.(THH(BP(n — 1))) to our spectral se-
quence. The differentials in the Bokstedt spectral sequence computing H, (THH(BP(n — 1)))

are calculated in [ARO5| Proposition 5.6], where it is shown that for p odd, j > p,
and m > n, there are differentials

(6) dr! (vi(0Tm)) = o (Cmr1)Vj—p(0Tm)-
The argument of [ARO05| Proposition 5.7] implies that

oo _ JH«(BP(n—1);F3) @r, Ap,(0Gli =n+1)  p=2,
o H,.(BP(n —1);F,) ®r, Fylor;|j > n]/(om;)P p> 2.
The extensions on the F°°-page of the Bokstedt spectral sequence computing
H.(THH(BP(n — 1))) are determined by [ARO05, Theorem 5.12|: there, it is shown
that for j > n + 1, we have (0(;)*> = 0(j11 when p = 2, and (07;)? = 0Tj41.
These imply extensions on the E*-page of the Bokstedt spectral sequence for
THH(BP(n — 1)/ X (p")), and the resulting answer is that of the proposition.

We now turn to (b). The calculation is similar to (a), the only difference being
that the E2-page of the Bokstedt spectral sequence is now

B2 — H. (BP<TL>7 FQ) QF, AF2 (O—(C’?L—‘rl)? UCj I] >n+ 2) p=2,
o H.(BP(n); F},) ®F, Ar,(0¢lj >n+1) ®p, Fplomlj >n+1) p>2.
Again, the differentials in the Bokstedt spectral sequence computing H, (THH(BP(n — 1)))

give rise to differentials in the above Bokstedt spectral sequence, and we have

o _ JHA(BP(n);F2) ®p, A, (0(Ch4), 061 = n+2) p=2,
"t | Ho(BP(n = 1):Fy) @, Fylom;|j = n+1]/(07;)P ®p, Ar,(0¢ut1) p> 2.

s

Again, the extensions on the E°°-page of the Bokstedt spectral sequence computing
H,(THH(BP(n — 1))) imply extensions on the above E*°-page, and the resulting
answer is that of the proposition. The Bockstein follows from the fact that 8(r;) =
¢; for p odd and B(¢;) = ¢, for p = 2. O

Proposition 2.2.16. There are isomorphisms
H(TC™ (BP(n—1)/X(p")); Fp) = H.(BP(n)[BA,]; F,)[h] ® h-torsion,
HI(TP(BP(n — 1)/ X (p")); Fp) = H.(BP(n)[BA,]; Fp) (),
H{(THH(BP(n — 1)/X (p")) %/ F) 2 H.(BP(n)"?/™ [BA,]; Fy) ().

Here, |h| = —2, and the h-torsion terms will be specified in the proof.
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PROOF. As in Proposition 2.2.15] the contribution from A, is just the F-
homology of BA,, and we will ignore this term in the calculations. Moreover,
the calculation for HS(THH(BP(n — 1>/X(p"))tz/pk;Fp) is similar to the calcula-
tion of H(TC™ (BP(n — 1)/ X (p™));F,) (and HS(TP(BP(n — 1)/ X (p™));F,)), so
we will only do the latter. (The only difference is that F,((%)) below is replaced
by F,((7)[ex]/€2.) The E%-page of the homological homotopy fixed points spectral
sequence computing H;(TC™ (BP(n — 1)/ X (p™)); F},) is given by

E?. = H.(THH(BP(n —1)/X(p")); F,) @, F,[1]

~ F2[0(<n+1)aha<127"' ?C’?L?C]L]Zn_'_l] p:2
FP[O—(Tn)vha CzIZ Z 1} ®F,, AFp [Tj |.7 2 n] p> 2.

There is a map to the above spectral sequence from the homological homotopy
fixed points spectral sequence computing H{(TC™ (BP(n —1));F,), and [BRO5,
Proposition 6.1] calculates that there are differentials d?(x) = ho(z) for every
z € H (THH(BP(n —1)/X(p")); F,). For j > n, the following classes survive
to the E3-page:
nt1—j
Ga1 = G +Go(¢G) = G + ¢o(Cns1)? , p=2
T =T+ ro(n)P T p> 2.

Moreover, (powers of) the classes o((y+1) at p = 2 and o(7,) at p > 2 are simple
h-torsion: for example, ho((nﬂ)ybﬂﬂ is killed by a d?-differential on (;, and the
case for a general power of o((,1) follows from taking a binary expansion of the
exponent. This leaves

Ei* = F2|Uﬂ][<127 e 7<7217<3L+17C_;+1|j >n+ 1]a b= 2;
E}, = Fy[h][Gli > 1) ®p, Ap,[7]41]7 >nl, p>2,

and the image of ¢ in filtration zero (these classes being simple fi-torsion). We claim
that the spectral sequence degenerates at the E3-page, which then implies the de-
sired result. (In the case of THH(BP(n — 1)/X (p"))*%/P, for instance, the class
eh'~P" plays the role of 7, in HS(THH(BP(n —1)/X (p"))*%/P;F,) for p odd.)
As with the proof of Proposition this follows from [BROS5, Proposition
6.1]: were there any differentials in the homological homotopy fixed points spectral
sequence for H,(TC™(BP(n — 1)/ X (p™));F,), there would also exist correspond-
ing differentials in the homological homotopy fixed points spectral sequence for
H,.(TC (BP(n — 1));F,).

However, the statement of [BROS5| Proposition 6.1] assumes that BP(n — 1)
admits the structure of an E.-algebra; this is not necessary, since their appeal to
[BRO5| Proposition 5.1] only uses the existence of the Dyer-Lashof operations Q)
and @, on H,(THH(BP(n — 1)); F,), which already exist in the homology of any
Es-algebra. It therefore suffices to know that THH(BP(n — 1)) admits the structure
of an Es-algebra, which is a consequence of our assumption that BP(n — 1) is an
E;3-form of the truncated Brown-Peterson spectrum. O

PROOF OF THEOREM [2.2.4](A). We will ignore the contribution from BA,, be-
low: the contribution from this term is simply its homology. We will first calculate
7 THH(BP(n — 1) /X (p")) via the Adams spectral sequence

Ey* = Extly" (F,, H.(THH(BP(n — 1)/X (p")): F,))) = m, THH(BP(n — 1)/ X (5"))}.
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Using Proposition [2.2.15(a), there is a change-of-rings isomorphism

Byt = Ethv(*n_l)*(vaFp[U(Cn-f—l)D EFp[o(Cnt1) vl0 < j <n—1],
where v; lives in bidegree (s,t — s) = (1,2p’ — 2). The Adams spectral sequence is
concentrated in even total degree (and therefore degenerates at the Fy-page). The
class 0((p41) in degree |(pt1|+1 = 2p™ is denoted 6,,, so that the above calculation
says that there is an isomorphism

. THH(BP (n — 1)/X (p™)) ~ BP(n — 1)[BAW].[0,].

Since THH(BP(n — 1)/ X (p")) ~ THH(BP(n — 1)) @amH(x (o)) X (p"), we see that
THH(BP(n — 1)/ X (p")) admits the structure of a THH(BP(n — 1))-module. There
is an Eg-map BP(n — 1) — THH(BP(n — 1)), so that THH(BP(n — 1)/ X (p™)) ac-
quires the structure of a BP(n — 1)-module by restriction of scalars. Therefore, each
of the BP(n — 1).-module generators of =, THH(BP(n — 1)/ X (p™)) lift to maps of
spectra from shifts of BP(n — 1) to THH(BP(n — 1)/ X (p")). Moreover, the re-
sulting map BP(n — 1)[BA,, x Q5%*"*1] — THH(BP(n —1)/X(p")) induces an
isomorphism on homotopy by construction, so we obtain the first part of Theo-
rem [2.2.4)(a).

The calculation for 7, THH(BP(n — 1)/ X (p™))*%/™ is similar to the calculation
of m,TC™ (BP(n —1)/X(p™)) (and 7, TP(BP(n — 1)/ X (p™))); moreover, it will be
illustrative to calculate m, TP(BP(n — 1)/ X (p™)), since the case of 7, TC™ (BP(n — 1)/ X (p"))
will just involve bookkeeping of the A-torsion terms in Proposition There is
an Adams spectral sequence

By = Exty (Fp, H{(TP(BP(n — 1)/ X (p")); Fp)) = m. TP(BP(n — 1)/ X (p"));,

which is in general only conditionally convergent, but is strongly convergent in this
case. (This is because H,(THH(BP(n — 1)/ X (p")); F,) is bounded-below and of
finite type.) By Proposition [2.2.16] there is a change-of-rings isomorphism

By™ = Exty,) (Fy F,() = Fylo;]0 < j < nl(h),

so that the Adams spectral sequence is concentrated in even total degree (and
therefore degenerates at the Fs-page); this gives the desired calculation. ([

Remark 2.2.17. The homotopy fixed points spectral sequence for 7, TC™ (BP(n — 1)/ X (p"))
has Fs-page given by

Ey* = BP(n — 1)[BA,].[0.][7].

By evenness, this spectral sequence degenerates at the Es-page. The calculation of
Theorem a) tells us that the class h#,, on the E.-page represents the class
vy, € mBP(n) (modulo decomposables).

Note that Theorem M(a) says in particular that 7, THH(BP(n — 1)/ X (p"))t%4/P =
7.BP(n)*%/P[BA,,]. There is an isomorphism 7, BP(n)*%/P = 7. BP(n — 1)!S" (which
was proved in [AMS98| Proposition 2.3], and conjectured to lift to an equivalence
of spectra in [DJKT 86l Conjecture 1.2]), so that 7, THH(BP(n — 1)/ X (p"))*%/P =

BP(n — 1)[BA,]«((h)). Note that unless n = 0, this is not isomorphic to 7, THH(BP(n — 1)/ X (p™))|

since 7, THH(BP(n — 1)/ X (p™))[0;, 1] is 2p"-periodic, while 7, THH(BP (n — 1)/ X (p™))!2/?
is 2-periodic.

9—1

n

B
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PROOF OF THEOREM [2.2.4|(B). We now calculate 7, THH(BP(n) /X (p™)), this
time with the use of Bockstein spectral sequences. (Similar arguments can be found
in [ACH21].) Again, we will ignore the contribution from BA,, below: the contri-
bution from this term is simply its homology. For simplicity, let us write

x:{o(cﬁm P=2 :{a(cm) p=2

o(Cny1) p>2 o(Tny1) p>2,

so that |z| = 2p"*! — 1 and |y| = 2p"*!. If M is a (left) BP{n)-module, let
THH(BP(n)/X (p"); M) denote THH(BP(n)/X (p")) @pp(ny M, so that we may in-
formally view THH(BP(n)/X (p"); F,) as THH(BP(n)/X (p"))/(p,--- ,vn). Using
Proposition b), one can show that

m. THH(BP(n) /X (p"); F;) = Fy[a, y] /2*;

we will compute THH(BP(n)/X (p™); BP(n)) using this calculation and n+ 1 Bock-
stein spectral sequences. The vg-Bockstein spectral sequence is given by

(7)

By = m, THH(BP(n)/X (p"); Fp)[vo] = Fplvo, z,y]/2* = m. THH(BP(n)/ X (p"); Zy).
It follows from the Bockstein calculation in Proposition [2.2.15(b) that there is a
di-differential

(8) di(y) = vor,

which implies d; (yof) = vy 2 (by Fp[vo)-linearity). However, (8) does not imme-

diately imply differentials on powers of y, since THH(BP(n)/X (p™)) does not admit
the structure of a ring (so the spectral sequence is not multiplicative). However,
this is easily resolved: there is a map to the above Bockstein spectral sequence from
the Bockstein spectral sequence computing . THH(BP(n); Z, ), whose E;-page is

'EF* = 7, THH(BP (n); F,)[vo).

The calculation of H,(THH(BP(n));F,) is described in [ARO5, Theorem 5.12];
from this, one can compute 7, THH(BP(n); F,,). Here, we will only need to observe
that the classes z,y € E}"" lift along the map 'E}"" — E["". We will continue
to denote these lifts by = and y; there is still a dy-differential di(y) = voz in
"B}, Since THH(BP(n); Z,) admits the structure of an Eo-ring, the above spectral
sequence is multiplicative. Therefore, we may appeal to [May70, Proposition 6.8],
which gives higher differentials on powers of y. In particular, we claim:

(9) o, (y+1 (1) = ogp D gy,

up to a unit in F)’. By taking base-p expansions, it suffices to prove this differential
when j is a power of p, say j = p*: then, @ says that dk+1(y”k) = Ué“'lxypk_l.
Using [May70], Proposition 6.8] for & > 1, we have
k—1 k=1, _ k—1 k_ k—1 k—1
A (¥ ) =woly? P lde(y” ) =woy? TP di(yP )
this inductively implies @D once we establish the case k = 1.
For p = 2, [May70| Proposition 6.8] says that

da(y*) = voydi (y) + Q1(di1(y)) = vizy® + Q1 (vox).
But
Qi(z) = Q1(0(¢hy1)) = 0(Q2(Chy 1)) = 0(Chsa),
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which is zero. Therefore, we see that do(y?) = vozry?, as desired. For p > 2,
[May70|, Proposition 6.8] says that

da(y?) = voy? tdi(y) + Y dldi(w)y’ T di(y)yr Y,
1<j<r
for some integer r. The “correction” term is a vg-multiple of sum of terms of
the form [zy/ !, zyP~7~!]. Note that this class lives in 7, THH(BP(n);F,), but
for the calculation of (7)), we are only concerned with the image of this class
in m,THH(BP(n)/X (p"); F,). We claim that the image of [zy~!, zy?=7~1] in
7. THH(BP(n)/X (p™); F,) vanishes, so the correction terms above vanish. To prove
this, observe that the Leibniz rule implies that, in 7,THH(BP(n);F,), we have
oy ) = el )
=22y eyt Y ] P e ey’ ey,

Here, all terms are written up to sign; this will not matter, since we will show that
each of the terms in the sum above vanish. The first term vanishes since 22 = 0,
and the third term vanishes since [z, 2] = 0. For the second and fourth term, we
will argue more generally that the image of [x,y*] in m, THH(BP(n)/X (p"); F,)
vanishes for any k& > 0. The Leibniz rule implies that [z,y*] = ky*~1[z,y], so it
suffices to show that the image of [z, y] in 7. THH(BP(n)/X (p"); F,) vanishes.

Since [z, y] lives in degree |z| + |y| + 1 = (2p" ! — 1) +2p" 1 + 1 = 4p"*! and
Typn+1 THH(BP(n) /X (p"); Fp) = Fp{y?}, we must have [z, y]=y? in 7, THH(BP(n)/X (p"); F,)
if [x,y] is nonzero. To show that [x,y]#y%, we observe that the Ey-map ¢ :
THH(BP(n); F,) — THH(BP(n)/MU;F,) factors through THH(BP(n)/X (p"); F}).
The classes  and y are in the image of the map THH(BP(n); F,) — THH(BP(n)/X (p"); F,),
and z is killed by the map ¢. Since ¢ is an Eg-map, we must have (([z,y]) =
[1(z),¢(y)] = 0; however, t(y?) = t(y)? is nonzero. Therefore, [z, y]#y?; but since
Typn+1 THH(BP(n) /X (p"); Fp) is a 1-dimensional F,-vector space spanned by y?,
we must have [z, y] = 0.

The upshot of this discussion is that the E,-page of @ is given by

B =Fylvo,y” Lz, ay, oy} (whey? L 1<i<r—1,1<j<p—1).

In particular, no power of y survives to the E,,-page, and since vy represents p, we
can resolve the vg-extensions to conclude that

(10) . THH(BP (n)/ X (0"); Zp) = Zp & P Zp /0" '™}
j=1
Note that |zy =] = 2jp"*+! — 1.

The higher Bockstein spectral sequences (for v1,--- ,v,) all collapse at the Ej-
page for degree reasons, as we now explain. For the v,,-Bockstein spectral sequence
with 1 < m < n, one can argue by induction on m (the base case is the same ar-
gument as the inductive step). First, observe that vy, - - , v, survive the Bockstein
spectral sequence, since BP(n) splits off THH(BP(n)/X (p")). In particular, there
cannot be any differential with target given by a product of monomials in the v;s.
By Zy[v1,- - , v )-linearity, any differential must therefore be of the form

de(zy’ 1) = virll .- ~v;:v:n:17yk71
for some j, k, exponents 11, -+ ,rq, and 1 < iy, i, < m. (More precisely, it will
be a sum of monomials of the above form, but this point will not matter.) But
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dp(zy’~') has bidegree (t —s,s) = (2jp" ™! — 2,7), while v}’ ---v]*v] zy* ! has
bidegree (t — s,s) = (2r1(pt — 1) + -+ + 2ry(pe — 1) + 2r(p™ — 1) + 2kp™+! —
1,7). Such a differential is therefore not possible, since 2jp"*! — 2 is even, while
2r1(pt — 1) + -+ + 21y (ple — 1) +2r(p™ — 1) + 2kp™*! — 1 is odd. The calculation
of 7, THH(BP(n)/X (p")) now follows from ([L0).

Since THH(BP(n)/X (p")) ~ THH(BP(n)) ®rumux@pr)) X (p"), we see that
THH(BP(n)/X (p™)) admits the structure of a THH(BP(n))-module. There is an
Es-map BP(n) — THH(BP(n)), so that THH(BP(n)/X (p™)) acquires the struc-
ture of a BP(n)-module by restriction of scalars. Therefore, each of the BP(n),-
module generators of m, THH(BP(n)/X(p")) lift to maps of spectra from shifts
of BP(n) to THH(BP(n)/X(p™)). Moreover, the resulting map BP(n)[BA,]| ®
D, Esz"+l’1BP<n> [BA,]/p*»@W+1 — THH(BP(n)/X (p")) induces an isomor-
phism on homotopy by construction, so we obtain Theorem [2.2.4](b). O

Remark 2.2.18. When n = 0, one may view the Bockstein calculation of Theo-
rem b) as a translation of the Serre spectral sequence for the fibration ().
Assume that p > 2. Indeed, the Serre spectral sequence is given by

EE* = H.(5*7 1 Zy) ® H. (Q8%7+Y Z,) = Zp[x,y]/xz = H.(25°(3); Zy).
There is a single family of differentials, determined multiplicatively from

d**(y) = pa;
this implies that d??(y™) = mpy™'z. The Serre spectral sequence collapses at the
E?Pt1_page, and the resulting answer is precisely (10]). In fact, if ¢, : Q282"+ —
§2P" =1 is a charming map in the sense of [Dev23al, Definition 4.1.1] (such as the
Cohen-Moore-Neisendorfer map of [CMNT79al, [CMNT79Db, [Nei81]), the proof of
Theorem [2.2.4(b) can be understood as a calculation of m.BP(n — 1)[Bfib(¢,)]
using the Serre spectral sequence for the Cohen-Moore-Neisendorfer type fibration
(11) 52" =1 Bfib(¢,) — Q82"+,
The Serre spectral sequence for is exactly the same as that of : the E2-page
is given by

E7, = H (5™ 712,) @ Ho Q8™ Z,) = Z, [2,y] /2® = H.(Bfib(,); Zp)-

There is a single family of differentials, determined multiplicatively from
d*" (y) = px;
this implies that d2P" (y™) = mpy™ 1z, and the Serre spectral sequence collapses
at the E?""+1_page. The upshot is that

Z, i=0,
Hi(Bfib(¢n); Zp) = { Zp/pk  2kp™ — 1,
0 else.

In fact, Theorem b) implies that there is an equivalence of BP(n — 1)-modules
THH(BP(n — 1)/ X (p" ")) ~ BP(n — 1)[BA,_1 x Bfib(¢,)].

The calculations of Theorem can be predicted from the results of [Dev23al.

Let us suppose that p is odd for simplicity. Assuming [Dev23al Conjectures D and

E], [Dev23al Corollary B] implies that there is a map Q2S%"+1 — BGL; (X (p"))
whose Thom spectrum is BP(n — 1)[QA,,]. This implies that there is an equivalence
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of spectra THH(BP(n — 1)/X (p™)) ~ BP(n — 1)[BA,, x QS5%"+1]; this is precisely
the first part of Theorem [2.2.4(a). Moreover, [Dev23a, Theorem A| says (still
assuming the aforementioned conjectures) that the Thom spectrum of the com-
posite fib(¢,) — Q252" 1 — BGL. (X (p")) is BP(n)[QA,]. This can be shown
to imply that 7, TP(BP(n — 1)/X (p")) ~ m,BP(n)"S' [BA,], which is indeed con-
firmed by Theorem [2.2.4|(a). This result also implies that there is an equivalence
of spectra THH(BP(n)/X (p")) ~ BP(n)[BA,, x Bfib(¢,+1)], which is indeed true
by Theorem b). We will state the results predicted by this discussion as a
conjecture.

Conjecture 2.2.19. Fiz an Es-form of the truncated Brown-Peterson spectrum

BP(n —1). Then THH(BP(n — 1)/X (p")) admits the structure of an S*-equivariant
BP(n)-module (where S' acts trivially on BP(n)), and the equivalences of Theo-

rem|2.2.4)(a) refine to p-complete equivalences of spectra
THH(BP(n — 1)/X (p"))'%2/™ ~ BP(n)*%/™[BA,)],
TP(BP(n — 1)/X (p")) ~ BP(n)S' [BA,).

The first equivalence is S* -equivariant for the residual S*/ jiy, -action on THH(BP (n — 1)/ X (p™))*2/™
and BP(n)t2/™,

Remark 2.2.20. The primary difficulty with proving Conjecture 2.2.19]is that it
is not clear how to endow TP(BP(n — 1)/X(p")) or THH(BP(n — 1)/X (p"))*%/™
with the structure of BP(n)-modules. Nevertheless, a small part of the final equiv-
alence in Conjecture can be proved unconditionally when n = 1. Namely,
there is a map TP(Z,/X (p)) = @B, _,—1) ¥2BP(1) which induces the inclusion of
summands on mod p cohomology. (This is the “easy” range, since the first predicted
summand of TP(Z,/X (p)) which is not covered by this claim is ¥ ~2P~DUBP(1);
but m of this spectrum this is exactly where the class vy lives.) We computed
the mod p homology of TP(Z,/X(p)) in Proposition This implies that
H*¢(TP(Z,/X (p)); Fp) = H*(BP(1); F,,)(h)) ®r, H*(BSU(p — 1); F,). There is an
Adams spectral sequence

Ext5" " (A)€(1), AJEQ1))(h)@r,H* (BSU(p—1); F,) = moMap(TP(Z,/X (p)), S¥BP(1))).

We wish to show that for j > —(p — 1), any class in bidegree (s,t — s) = (0,2)
survives to the E.-page. For this, it suffices to show that there can be no nonzero
d,-differential off this class for » > 2. This differential would necessarily land in
(r,25—1). By [APT6, Proposition 4.1], Exti{i (AJE(1),AJE(1)) vanishes for s > 1,
t—sodd, and t—s > —2(p—1). In particular, we see that taking (s,t—s) = (r,2j—1),
we have 25 — 1 > —2(p — 1) precisely when j > —(p — 1). Therefore, we get a map
TP(Z,/X (p)) — ¥ BP(1) for every j > —(p — 1), which gives the desired claim.

2.3. Variant: THH over a deeper base. In Theorem [2:2.4] we saw a “poly-
nomial” generator in degree 2p™, where n is the height. When n = 0, this reduces
the Bokstedt generator in degree 2; we will now discuss a variant of Theorem
when n = 1, where one obtains a generator in degree 2.

Construction 2.3.1. Let U(1) — SU(p) denote the inclusion given by the homo-
morphism
A= diag(X, -, A, ALTP),
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There is an induced map BU(1) — BSU(p), which defines an Eg-map QU(1) ~
Z — QSU(p). Let J(p) denote the Thom spectrum of the composite Es-map
p: QU(L) — QSU(p) — QSU ~ BU. Then J(p) admits an Ef-structure by
Proposition [2.1.11|such that there is an Eff-algebra map J(p) — X (p). Note that
the underlying E;-map of p is null, since By : S' — B2U ~ SU is a class in
71(SU) = 0. Therefore, the underlying E;-ring of J(p) is S[Z] = S[t*!]. Moreover,
the underlying E;-map of J(p) — X(p) — Z, is the map S[t*!] — Z, sending
i1
Proposition 2.3.2. There is an equivalence THH(T'(1)/J(p)) ~ T(1)[Jp-1(S?)].
Similarly, THH(X (p)/J (p)) = X (p)[Jp-1(5?) x SU(p — 1)].

PROOF. Indeed, THH(T'(1)/J(p)) ~ THH(T'(1)) @1uncs(p)) J(p) is equivalent
to T'(1)[S*~ ] @p(1yis1) T(1); but there is a fiber sequence

St — 52t g%l gt — PP~ , 1 (S?),

from which the desired claim follows. ]

Proposition 2.3.3. The following statements are true:
(a) There is an equivalence THH(Z,/J (p)) ~ Z,[2S3]. In particular, 7., THH(Z,/J (p)) =
Z,[x] with |x| = 2. On homotopy, the map THH(Z,/J(p)) — THH(Z,/X (p))

s given by
) i/
N 0 J € pZ,
0 else.
(b) The canonical map THH(Z,/J(p)) — THH(F,/J(p)) factors through the
unit THH(F,) — THH(F,/J(p)), and defines an equivalence F, @z,
THH(Z,/J(p)) = THH(F,) of THH(Z,)-modules.
PROOF. For part (a), we begin by observing that there is an equivalence
THH(Z,/J(p)) ~ THH(Z,) QTHH(J (p)) J(p) ~ Zp[QS3<3>] Rz, [U(1)] Z,.
The map Z,® ;) THH(J(p)) — THH(Z,,) factors through Z, ® x,) THH(X (p)) —
THH(Z,), and can be identified with Z,-chains of the composite
U(1) = SU(p) — S~ 25 053(3).

Note that the map U(1) — S?*~! is the fiber of the map S?*’~' — CPP~'. This
composite can be identified with action of S on Q253(3). Since there is a fiber
sequence

St Q83(3) — Q83
we see that THH(Z,/J(p)) ~ Z,[Q2S3]. To identify the map THH(Z,/J(p)) —
THH(Z,/X (p)), observe that CP?~! ~ J, 1(5?) and that there is a square where
each row and column is a fiber sequence:

Q(SU(p — 1) x CPP™1) ~ QSU(p)/S! I CPP~ ! xSU(p—1)
St 083(3) ————— = Q53

| | |-

SU(p) 053(3) ——= Q8%+ x BSU(p — 1).




THH, BP(n), AND A TOPOLOGICAL SEN OPERATOR 27

The effect of the map THH(Z,/J(p)) — THH(Z,/X (p)) is dictated by the bottom-

right vertical map, which is induced by the James-Hopf map H,, : 083 — Q8%+l

On Z,-homology, the effect of the James-Hopf map is as stated in Proposition a).
For part (b), there is an equivalence

THH(F,/J(p)) ~ THH(F,) @tum(s(p) J(p) = Fp[Q25°] @%,ua)) Fp-

However, the map F,® ;(, THH(J(p)) — THH(F),) factors through F,®z, THH(Z,) —
THH(F,,), and can be identified with F,-chains of the composite of U(1) — Q53(3
with the canonical map Q53(3) — QS2. This composite is null as an E;-map (in
fact, as an Eo-map), since there is a fiber sequence of E;-spaces

BU(1) ~ CP™ — S3(3) — S3.
Therefore, we see that
THH(F,/J(p)) ~ F,[Q5% ®F, (F) @p,ua) Fp) = Fp[Q5° x CP™].

This implies that the map THH(Z, /J(p)) — THH(F,/J(p)) factors through THH(F,) —
THH(F,/J(p)). In turn, we obtain a map F, ®z, THH(Z,/J(p)) — THH(F,)
which sends the generators in . (F, ®z, THH(Z,/J(p))) = F,[z] to the generators
in 7, THH(F,) = Fy[o]. Therefore, the map F, ®z, THH(Z,/J(p)) — THH(F,)
is an equivalence, as desired. (I

Remark 2.3.4. The map J(p) — X(p) induces a map v : THH(Z,/J(p)) —
THH(Z,/X (p)). Under Theorem and Proposition [2.3.3] the map u can be
identified with the Zj,-chains of the composite

Q83 — QST 5 QS+ BSU(p — 1);

here, the map Q53 — QS?P*! is the Hopf map. This claim follows from the proof
of Proposition 2:3.3] Proposition 2:3:2 and the EHP fibration

Jp_1(S?) = Q8% — Q8# T,

In particular, the map u induces the map Z,[z] — Z,[0] ®z, Z,[BSU(p — 1)] which
sends 2™ — §™/P if p | m and 2™ — 0 otherwise.
Note that if T'(1) were an E-algebra, the map u would factor through THH(Z,/J (p)) —
THH(Z,/T(1)); and under the equivalences of Theoremand Propositionm
this would identify with the Z,-chains of the Hopf map.

Remark 2.3.5. Proposition demonstrates the dependence of THH(R'/R)
on the E;j-R-algebra structure on R’. Indeed, recall that the underlying E{-map
of the Eo-map J(p) — X(p) — Z, is the map S[t¥!] — Z, sending t ~ 1.
Proposition states that THH(Z,/J(p)) ~ Z,[2S?]. However, suppose that
S[t*1] = S[Z] is equipped with its standard Eg-structure, and Z, is viewed as
an Eq-S[Z]-algebra via the composite S[Z] — S — Z,. Then THH(Z,/S[Z]) ~
THH(Z,) ® S[CP™] ~ Z,[Q53(3) x CP]. Since Z,[253(3) x CP*] # Z,[Q53],
we conclude that THH(Z, /S[Z]) # THH(Z,/J(p)).

Corollary 2.3.6. There is an isomorphism w,.TP(Z,/J(p)) ~ Zp[til]@_l)((h))
with |kl = —2.

Corollary 2.3.7. If C is a Z,-linear co-category, there is a (non-S*-equivariant)
equivalence THH(C/J(p)) ®z, Fp, ~ THH(C ®z, F)).
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PROOF. By Proposition [2.3.3(b), there is an equivalence THH(Z,/J(p)) ®z
F, ~ THH(F,) of THH(Z,)-modules. It follows that

THH(C/J(p)) ®z, Fp =~ THH(C) ®THH(Z,) THH(Z,/J(p)) ®z, Fp
= THH(C) ®THH(Z,) THH(F,) ~ THH(C ®z, F,),
as desired. O

Remark 2.3.8. Recall from [AMN18| Theorem 3.5] that if S[z] = S[Z>¢] de-

notes the flat polynomial ring on a class in degree 0, then there is an isomorphism

m.THH(Z,/S[2]) & Z,[0%(z —p)], where the Eoo-map S[z] — Z, sends z — p. This

implies that 7,.TP(Z,/S[z]) = Z, [z]?z_p)((h)) Similarly, there is an isomorphism
hF X

7. TP(Zy/S[]) = Zy[) ., (1), where §— p and S[7]) = (Slg*']}, , ) "

In the same way, there is an isomorphism m, THH(Z,/S[t*']) = Z,[0%(t +
p — 1)], where the Eo-map S[t*'] — Z, sends ¢t + 1 — p. This implies that
. TP(Z,/S[t*]) = Z, [t} 1) (7). In light of the obvious analogy to Proposi-
tion and Corollary it is natural to ask: what is the role of J(p)?

To answer this, let us assume for simplicity that 7'(1) admits the structure of
an Es-ring. The main utility of J(p) is that it admits, by construction, a direct
comparison to T'(1); one can view J(p) as containing roughly the same “height 17
information as T'(1). On the other hand, we do not know how to directly compare
S[t*!] (with the standard Es-structure) to T/(1). (Both admit E;-algebra maps to
T(1)[t*!], but this is somewhat unsatisfactory.) One can therefore view Construc-
tion as an explicit modification of the Es-structure on S[t*!] such that the
resulting Es-algebra admits an interesting map to 7°(1).

It is natural to ask if Proposition admits a generalization to BP(n — 1).
At height 1 and p = 2, we can explicitly construct some Ef-rings which give higher
analogues of J(p), but a general construction at higher heights and other primes
eludes us.

Construction 2.3.9. Recall from Remark[2.1.10|that there is an Eo-map QSp(2) —
BU whose Thom spectrum is equivalent to T'(2) at p = 2. Let T2(2) denote the
Ef-ring defined as the Thom spectrum of the composite Ey-map

0Spin(4) — QSp(2) — BT,

where the first map is induced by the inclusion Spin(4) C Spin(5) 2 Sp(2). Simi-
larly, let T4(2) denote the Eff-ring defined as the Thom spectrum of the composite
Es-map

p

QU(2) — QSp(2) — BU,
where the first map is induced by the inclusion U(2) C Sp(2). Note that this
inclusion factors as U(2) — Spin(4) — Sp(2), so that there is a composite map of
Ef-rings

T4(2) = To(2) — T(2).

Remark 2.3.10. There is a fiber sequence
QS3 — QSpin(4) — QS3,

which implies that MU, (75(2)) ~ MU,[t1, 2] where |z3| = 2. Similarly, there is a
fiber sequence
083 — QU(2) — QS ~ Z,
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which implies that MU, (T4(2)) ~ MU, [t1, 5] where |zo| = 0.

Lemma 2.3.11. There is a diffeomorphism Sp(2)/Spin(4) = S*, as well as a
homotopy equivalence Sp(2)/U(2) =~ J3(S?).

PRrROOF. The first diffeomorphism follows immediately from the isomorphism
Sp(2) = Spin(5) and the resulting chain
Sp(2)/Spin(4) = Spin(5)/Spin(4) = SO(5)/S0(4) = S*.

To prove the second equivalence, the key input is [Amel8, Proposition 4.3], which
says that there is a fiber sequence

Va(R?) — J3(5%) — CP™>;

in other words, there is an Sl-action on the Stiefel manifold V5(R5) such that
Vo(RP)/St = J3(S?). Recall that Vo(RP) is diffeomorphic to SO(5)/SO(3) =
Spin(5)/SU(2). It is not difficult to see that the claimed S!-action on Va(R5)
via the above fiber sequence is precisely the residual action of U(2)/SU(2) = S*
on Spin(5)/SU(2); in particular, we may identify J3(S?) ~ Spin(5)/U(2), as de-
sired. O

Remark 2.3.12. The quotient Sp(2)/U(2) is also known as the complex La-
grangian Grassmannian Gry™#(T*C?) of Lagrangian subspaces of T*C2.

Warning 2.3.13. One should not confuse Sp(2)/U(2) with the quotient Sp(2)/(Sp(1)x
U(1)): indeed, Lemmasays that the former is homotopy equivalent to J3(S?),
while the latter is diffeomorphic to S7/U(1) = CP3. These spaces are not homotopy
equivalent (although they do become equivalent after inverting 6).

Lemma [2.3.11] has the following amusing (inconsequential?) consequence:

Corollary 2.3.14. Let Q C CP* be a complex quadric, and let Gry (R%) denote
the Grassmannian of oriented 2-planes in R®. Then, there are diffeomorphisms
Q = Gry™(T*C?) = Gr (R?), and these are homotopy equivalent to J5(S?).

PROOF. Since Sp(2)/U(2) = SO(5)/(SO(3)-SO(2)), we can identify Sp(2)/U(2) =
Gr;ag (T*C?) with Grj (R?). Therefore, Lemma gives a homotopy equiva-
lence Gry (R®) ~ J3(5?). The desired claim now follows from the observation
that Grd (R?) is diffeomorphic to a quadric @ € CP* via the map Grj (R°) —
Gr;(C%) = CP* induced by the isomorphism R'© =5 C5; see [KN96, Example
10.6, Page 280]. O

Remark 2.3.15. There is a ﬁbrationﬁ (see for a more general statement)
(12) S% — J3(S%) — 54,
which, under the diffeomorphism
Spin(4)/U(2) = (SU(2) x SU(2))/U(2) = SU(2)/U(1) = S,
can be identified via Lemma 2311 with the fibration
Spin(4)/U(2) — $p(2)/U(2) — Sp(2)/Spin(4).

8The fibration is analogous to the “twistor” fibration (see ) S?2 —» CcpP? — st
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There is also a commutative diagram where each row and column is a fibration:

u(1) U©2) T
Sp(1) Sp(2) S7

]

§2 = J3(8?) ——= 5%

the rightmost vertical fiber sequence is the Hopf fibration. This diagram captures
the relationships between J(2), T4(2), T'(1), and T'(2).

Remark 2.3.16. The equivalence Sp(2)/U(2) = Gry®8(T*C?) ~ J5(S2) of Lemma
can be used to understand the relationship between T'(2) and the Mahowald-
Ravenel-Shick spectrum y(2) from [MRSO01] (at the prime 2)E| Recall from Re-
mark that there is an Eo-map QSp(2) — BU whose Thom spectrum is
equivalent to T'(2) at p = 2. Similarly, recall that y(2) is the Thom spectrum of

the bundle determined by the map p : QJ3(5?) — Q253 — BO, where the sec-

ond map is the extension of the Mdbius bundle S* — BO. Under the equivalence
Sp(2)/U(2) ~ J3(5%), the map p : QJ3(S?) — BO can be identified with the
composite

Q(Sp(2)/U(2)) — Q(Sp/U) — B20 4 BO;

the middle map is obtained via Bott periodicity. Applying [Dev23al Proposition
2.1.6] to loops on the fibration

Sp(2) — J3(S?) — BU(2),

we conclude that y(2) = Q.J3(S?)# is equivalent as an E;-ring to the Thom spectrum

of an Ej-map U(2) — BGL1(7'(2)). This implies, for instance, that THH(y(2)/T(2)) ~
y(2)[BU(2)]. Since k(2) ~ y(2) @p(2) BP(2), this implies that THH(k(2)/BP(2)) ~
k(2)[BU(2)]. Similarly, since y(2) ®p(2) ku ~ Fa, we also recover the observa-
tion that Fy is equivalent as an Ej-ring to the Thom spectrum of an E;-map
U(2) — BGL; (ku), and hence that HH(F5/ku) ~ F5[BU(2)] as Fy-modules.

Proposition 2.3.17. There is an equivalence THH(T(2)/T2(2)) ~ T(2)[S*], as
well as an equivalence THH(T'(2)/Ty(2)) ~ T(2)[J3(5?)].

PRrROOF. Note that 7 is nullhomotopic in T4(2) (and hence in T5(2)), since the
inclusion SU(2) — U(2) defines a map S? — QU(2), which in turn Thomifies to

9A simpler version of this discussion simply states that if 252 — BO is the map extending
the Mobius bundle S — BO, then [Dev23al Proposition 2.1.6] along with loops on the fibration

s% 1y 52 — Ccp>
implies that there is a map S' — BGL1(T(1)) whose Thom spectrum is the E1-quotient S//2 =
y(1). The map S — BGL1(T'(1)) detects 1—2 € mo(T(1))* on the bottom cell of the source, so we
recover the fact that 7'(1)/2 >~ y(1). In particular, HH(y(1)/T'(1)) =~ y(1)[CP*°]. Since y(1) ®7(1)
Z> ~ F, this recovers the well-known observation that HH(F2/Z2) ~ F2[CP°], at least as

modules over Fa. This argument does not give the Fa-algebra structure, since HH(y(1)/7'(1)) is
not a ring.
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a map Cn — T4(2) which factors the unit. By Lemma [2.3.11] there are fiber
sequences of E;-spaces

QSpin(4) — QSp(2) — Q5%
QU(2) — QSp(2) — QJ3(S?),
which by [Dev23al, Proposition 2.1.6] (see also [Beal?]) imply that 7'(2) is a Thom

spectrum of an E;-map QS* — BGL1(T(2)) (resp. QJ5(S%) — BGL1(T4(2))).
Together with [BCS10], this implies the desired claim. O

Remark 2.3.18. Recall that SU(4)/Sp(2) = S5. Tt follows that THH(X (4)/T(2)) ~
X (4)[S®]. Similarly, recall that SU(4) = Spin(6); therefore, there is an diffeomor-
phism

SU(4)/Spin(4) = Spin(6)/Spin(4) = SO(6)/SO(4) = V5 (R?).
It follows that THH(X (4)/T%(2)) ~ X (4)[V2(R?®)]. (Note also that SU(4)/Spin(4) =
SU(4)/(SU(2) x SU(2)) can be viewed as an “oriented complex Grassmannian”
Gra(C*).) Finally, THH(X (4)/T%(2)) ~ X (4)[SU(4)/U(2)].

Corollary 2.3.19. There are 2-complete equivalences of ku-modules
THH (ku/T>(2)) ~ ku[Q25°],
THH(ku/Ty(2)) ~ ku[QS?].
Under these equivalences, the maps
THH(ku/T4(2)) — THH(ku/T»(2)) — THH(ku/T(2))
are induced by taking ku-chains of the Hopf maps
0s® 25 055 & 050,

Proor. Using Proposition this follows from Theorem [2.2.4f(a) (more
precisely, the version with p = 2 and n = 2 for THH(BP(1)/T'(2)) ~ ku[259]), and
the fiber sequences of E;-spaces

QS* ~ Q(Sp(2)/Spin(4)) — Q28° — O2S?,
0J3(S?) ~ Q(Sp(2)/U(2)) — Q25% — 0259

obtained by looping the 2-local EHP fiber sequences for S* and S2?. The identi-
fication of the maps THH(ku/T4(2)) — THH(ku/T»(2)) and THH(ku/T>(2)) —
THH(ku/T(2)) is an immediate consequence. O

Remark 2.3.20. Recall from Theorem a) that the generator 6o € mgTHH(ku/T'(2))
can be understood as o%(v2) (up to decomposables). Taking THH relative to the
Thom spectrum T5(2) over Spin(4) can be regarded as extracting a square root of

02 € msTHH(ku/T'(2)). Similarly, taking THH relative to the Thom spectrum 74(2)

over QU(2) can be regarded as extracting a fourth root of 62 € msTHH(ku/7T'(2));
hence the subscript 4. (Roughly, the generator of w4 THH(ku/75(2)) can be thought

of as 0%(v1); and the generator of moTHH (ku/T}(2)) can be thought of as 0%(2).)

In particular, one should regard Ty(2) = (2U(2))* as the appropriate analogue of

J(p) at height 1 and p = 2.



32 S. K. DEVALAPURKAR

Remark 2.3.21. Corollary suggests that kuj is equivalent to the Thom
spectrum of an Ej-map Q25% — BGL;(T4(2)). This could also be rephrased in a
manner similar to the results of [Dev23al: assuming [Dev23al, Conjectures D and
E|, [Dev23al Corollary B| says that ku) is the Thom spectrum of a map Q259 —
BGL1(7T'(2)). It follows from Proposition that T'(2) ~ colimg,(s2) T4(2), so
that [Dev23al, Corollary B] implies

kuj ~ colimgzge T'(2) =~ colimgz go colimg 7, (g2) T4(2) ~ colimg2gs T4(2),

where the final equivalence comes from the Ej-equivalence colimgzgo Q.J3(S5?) ~
0253 arising from the EHP sequence.

This leads to the following, which we only state for T'(n); there is an analogue
for X (p™), too.

Conjecture 2.3.22. Fiz a prime p and n > 0. For each 0 < j < n, there are
Ef-rings T,i(n) equipped with Ef-maps

Tpn(n) = -+ = Tpi(n) = Tpi-1(n) = --- = Ty(n) =T (n)

such that there are p-complete equivalences
THH(T (n)/Tpi (n)) ~ BP(n — 1)[J,_1(S?"
THH(BP(n — 1)/T,,; (n)) ~ BP(n — 1)[25%" " +1].

The map THH(BP(n —1)/T};(n)) — THH(BP(n —1)/T},;-1(n)) induced by the
Ef-map T,i (n) = Tpi-1(n) is given by BP(n — 1)-chains on the Hopf map Qs
Q52" L I other words, if@}l/pj € mopn—i THH(BP(n — 1) /T, (n)) denotes the
generator (roughly, thought of as 0*(v,—;)), then
Topn—s THH(BP (n — 1) /T, (n)) 3 04/ (047" ) € myp s THH(BP (n — 1)/ T, (n)).

n—j

)

In particular, Conjecture[2.3.22[says that for the putative Eff-ring T}« (n), there
is an equivalence THH(BP(n — 1) /Tyn (n)) ~ BP(n — 1)[o] with |o| = 2.
Example 2.3.23. There is an inclusion Spin®(5) 2 Sp(2) - U(1) C Sp(3) (whose
quotient is CP®), so that composition with the inclusion Sp(3) C SU(6) defines
an inclusion Sp(2) - U(1) € SU(6). In particular, we obtain an Es-map Q(Sp(2) -
U(1)) — QSU(6). The Thom spectrum of the resulting composite Eo-map

Q(Sp(2) - U(1)) — QSU(6) — QSU ~ BU

defines an Eff-ring, which we expect can be identified with Tx(3) for p = 2.
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3. The topological Sen operator

3.1. Constructing the topological Sen operator. There is a much sim-
pler description of the descent spectral sequence of Remark following the
perspective of Remark that Theorem [2.2.4|b) is essentially a calculation of a
Serre spectral sequence. We will continue to fix Es-forms of the truncated Brown-
Peterson spectra BP(n — 1) and BP(n).

Notation 3.1.1. Let R be an E,.-Z,-algebra. We will write ' to denote R[BSU(p—
1)] and € to denote m.eff. (The notation is meant to indicate that e only plays a
“small” role in the below discussion.)

We will need the following variant of [Dev23al Conjecture E|. Recall from
[Dev23al Construction 3.1.10] (see also [Beal]) that there is a class x,, € m2,-1X(n)
such that the Thom spectrum of the resulting E;-map Q5%+ — BGL,(X(n)) is
X(n+1) as an E;-X(n)-algebra.

Conjecture 3.1.2. Let 33(X(n)) = X (n)"SU™) denote the Es-center of X (n).
Then:
o X(n)"SU™) admits the structure of an Bz x U(1)-algebra such that the
unit map X(n)"SVM — X(n) is a map of Ef-algebras and n = 0 €
(X (1)U
o the class x, € Tan_1X(n) lifts to a class X, € T2,_1X (n)"SY") such that
the Thom spectrum R(n+1) of the resulting map S+ — B2GLy (X (n)"SVU(M)
admits the structure of an Bq-X (n)"SV™ _algebra;
o the X (p™ —1)-linear co-category € = LModgp,—1)y admits a lift to R(p™).
The article [Dev23al is concerned with a variant of the preceding conjecture.

I am grateful to Ferdinand Wagner for pointing out that the previous version of the
following construction had an error.

Construction 3.1.3 (Topological Sen operator). Assume Conjecture Note
that R(n) ®x(,_1)rsum-1 X(n — 1) can be identified with X (n). The Hochschild
homology HH(R(n)/X (n — 1)"SU(»=1) is well-defined (thanks to [DHL¥23] and
the assumption that X (n)"SU(") admits the structure of an Ez x U(1)-algebra),
and admits the structure of an E;-R(n)-algebra. Using [BCS10], one finds that
its underlying R(n)-module is R(n)[S?"~1]; in particular, the fiber of the canonical
unit map HH(R(n)/X (n — 1)"SU=1) 5 R(n) (which is an E;-algebra map) is
equivalent to X2"~1R(n), or equivalently, the cofiber of this unit map is 2" R(n).

Let € be an X (n)-linear co-category which admits a lift C to R(n). This defines
a cofiber sequence

THH(C/X (n — 1)"V(=1) s THH(C/R(n)) — 2" THH(C/R(n)).
Base-changing along the Ef-map X (n — 1)’V 4 X(n), we get:
Theorem 3.1.4. A;s’sume Conjecture . Let C be a left X (n)-linear co-category
which admits a lift C to R(n). Then there is a cofiber sequence
(13) THH(C/X (n — 1)) & THH(C/X (n)) On, Y2"THH(C/X (n)),

where the map ¢ is S*-equivariant, and the cofiber of v is (at least nonequivariantly)
identified with " THH(C/X (n)). We will call the map ©,, : X" THH(C/X (n)) —
THH(C/X (n)) the topological Sen operator.
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Intuitively, ©,, is “Koszul dual” to the action of Q253" on X(n — 1) (whose
homotopy quotient is X (n)).

Warning. Throughout this article, when we talk about the “topological Sen op-
erator” applied to an X (n)-linear co-category C, we will assume Conjecture
and that C admits a lift along R(n) — X (n).

Remark 3.1.5. A simpler analogue of Theorem can be described as follows.
Let A be an Ef-ring, and let A[t*!] be the flat Laurent polynomial ring over
A on a generator in degree 0. Suppose C is an A[tT!]-linear co-category. The
nonequivariant equivalence HH(A[t*!]/A) ~ A[t*!][S'] defines a cofiber sequence

(14) HH(€/A) — HH(C/A[t¥')) 5 R2HH(C/A[F)))

analogous to Theorem [3.1.4] which exhibits V : HH(C/A[t*1]) — Z2HH(C/A[t*!])
as a “Gauss-Manin connection”. Just as in Theorem the map HH(C/A) —
HH(C/A[t*!]) in (14) is S'-equivariant, but we can only nonequivariantly identify
its cofiber with S2HH(C/A[tF1]).

Remark 3.1.6. At the level of homotopy, the map © in for € = LModgp (1)
can be identified using Theorem Namely, recall that 7, THH(BP(n — 1)/ X (p™)
BP(n — 1)[BA,].[0x] by Theor(a); it then follows from Theorem [2.2.4{b)
that © must send

1%

©:607 — jppi—t.

Therefore, we may informally write © = p@gnm From the point of view of Re-

mark the map © can be interpreted as the d?"-differential in the Serre

spectral sequence computing the BP(n — 1)-homology of the total space of the fi-

bration . Determining the action of © on THH(BP{n — 1)/ X (p?)) for j <n—1

can therefore be viewed as an analogue of determining the differentials in the

Serre spectral sequence/Gysin sequence of a putative analogue of the Cohen-Moore-

Neisendorfer fibration (where p is replaced by v,,—;).

One can make some qualitative observations about the action of © on THH(BP(n — 1)/X (p’))

for j < n — 1. Indeed, recall from that there is an isomorphism

m THH(BP(n — 1)/ X (p?)) /vjo,n—j) = BP(n — D)[BA;].[0n]/vj0,n—j) @, AF, (Aj41, -+ 5 An).-
An easy calculation shows that there is an isomorphism

n

nTHH(X (p")/X () = X(0") | [I Ai] @24 ZepyNgars -5 )
i=j+1
Therefore, the calculation of m, THH(BP(n —1)/X(p’))/v(0,n—;) implies that the
image of a class y € 7. THH(BP(n — 1)/ X (p/)) under © : THH(BP(n — 1)/ X (p’)) —
¥2P’ THH(BP(n — 1)/X (p?)) lives in the ideal generated by vjg ,—j1) = (B, * , V—j)-

Remark 3.1.7. The fact that the cofiber of the S'-equivariant map « : THH(BP{n — 1) /X (p"—
1)) — THH(BP(n — 1)/ X (p™)) is (at least nonequivariantly) identified with £2*" THH(BP(n — 1)/X (p™))
makes it more difficult to determine TP(BP(n — 1)/X(p")) (even modulo v,_1)

10T his action of © on 6, = o2(vy) is related to the observation from [Lee22] Lemma 3.2.8(d)]
that there is a choice of vy, such that the right unit ng : BP.« — BP.BP = BP.[t1, t2, - - - | satisfies
d(vn) = nr(vn) — vn = ptn, (mod t1, -+ ,tn_1).
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from our calculation of m. TP(BP(n —1)/X(p")) in Theorem and the pre-
ceding description of © as an endomorphism of THH(BP(n —1)/X(p")). One
fundamental question is therefore to describe the S*-action on cofib(s).

If we assume Conjecture (and the analogue of Conjecture for T'(n)),
then Theorem can be refined: namely, if € is a left T'(n)-linear co-category,
then there is a cofiber sequence

(15) THH(C/T(n — 1)) % THH(C/T(n)) 2% Y2 " THH(C/T(n)).

Remark 3.1.8. Suppose n = 1 and € = Modz, for p odd. Then there is a map

TP(Z,) — TP(Z,/T(1)), and a trace map K(Z,) — TP(Z,). Let j = 7>0Lx1)S;

upon p-adic completion, there is an equivalence (see [BM94] Theorem 9.17])
K(Zy)) ~jVEjVSku.

The summand j is the unit component, i.e., there is an E,.-ring map j — K(Zp);\.

It follows that after p-completion, there is a ring map j — TP(Z,). Assuming the
equivalence TP(Z,/T (1)) ~ BP(l)tS1 of Conjecture 2.2.19|7 the following diagram
commutes:

] BP<1>

unitl lunit

TP(Z,) —= TP(Z,/T(1)).

Let £ be a topological generator of Z;, and let Yt BP(1) — £2P~2BP(1) be the
associated Adams operation. Then, the fiber of ©¢ — 1 is j. Based on the above
commutative diagram, one expects that under the equivalence TP(Z,/T'(1)) ~

BP<1>‘ES1 of Conjecture [2.2.19) the map ¢ — 1 is closely related to @tz‘s;l. Note,

for example, that if we take ¢ = p + 1, the map ¢’ — 1 sends v] p“p(j)Jrlv{

up to p-adic units; this should be compared to the fact that ©z,6 sends 0{ —
ij{;l by Remark [3.1.6 This discussion, as well as the classical discussion in
[BM94], suggests that TP(Z,), ~ (jtsl)zﬁ. In fact, something stronger is true:
in forthcoming work [DR23] with Arpon Raksit, we will show that THH(Z,) =
750(j%%/P) as cyclotomic E-rings.

Example 3.1.9. Let n = 1, and let € = Modgp(1y. Then Theorem gives a
cofiber sequence

THH(BP(1)/X (p — 1)) — THH(BP(1)/X (p)) —25 S22 THH(BP(1)/X (p)).
Moreover, recall from Theorem b) that there is a p-complete equivalence
THH(BP(1)/X (p)) ~ BP(1)[BSU(p — 1)] & D S¥7"~'BP(1)[BSU(p — 1)]/pj.
i>1
Let a; denote the BP(1)-module generator of the summand 27" ~1BP(1) /pj. Since
THH(BP(1)/X (p — 1)) ~ THH(BP(1))[BSU(p — 1)], the calculations of [AHL10,
Section 6] can be rephrased as follows. For 0 < k < v,(j), ©pp(1) should be given
on homotopy by

ph+l_q

J pl—
OBp(1) 3Pkaj — (pk — 1> aj_pevy 7 e
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up to p-adic units. A different perspective on this computation is given in [Lee22].

Variant 3.1.10. One can prove a variant of Theorem by replacing X (p) with
J(p) (for which one does not need an analogue of Conjecture [3.1.2]). In this case,
the fiber of the E1-map THH(J(p)) — J(p) is £.J(p), so that if € is a left J(p)-linear
oo-category, there is a cofiber sequence:

(16) THH(C) = THH(C/J(p)) LN Y2THH(C/J(p)).
Here, the map ¢ is S'-equivariant, and cofib(¢) is (at least nonequivariantly) identi-
fied with 2 THH(€/J(p)). Proposition[2.3.3|shows that THH(Z,/J(p)) ~ Z,[Q2S°].

On homotopy, the map THH(Z,/J(p)) — Y*THH(Z,/J(p)) is given by the d*-
differential in the Serre spectral sequence for the fibration

St — QS3(3) — Q83
For example, under the isomorphism 7, THH(Z,/J(p)) = Z,[z] with |z| = 2, the
map O’ in the cofiber sequence for n = 1 sends 27 +— jzi~ 1.

Suppose € is in fact a Z,-linear oco-category. Base-changing along the map
Z, — F;, and using Corollary [2.3.7, we obtain a cofiber sequence

(17) THH(C) ®z, F, - THH(C @, F,) 2 S2THH(C ©7, F,).
Note that the map ©’ : THH(F,) — S2>THH(F,,) sends 07 + jo’~! on homotopy.
It follows that upon composition with o : S*THH(C®z, F),) - THH(C®z, F,), ©'

acts by multiplication by j on the homotopy of the jth graded piece grZ THH(C ®Qz,
F,) of the o-adic filtration on THH(C ®z, F)).

Remark 3.1.11. Let R be an animated Z,-algebra. Let " denote the Nygaard-
completed prismatic cohomology of R, and N?  x denote the ith graded piece of the
Nygaard filtration N2*(" z). Note that [BL22a, Remark 5.5.15] gives an isomor-
phism N?("z{i}) = N? g, where ~g{i} denotes the Breuil-Kisin twisted prismatic
cohomology of R. Using the methods of [BM22], one can construct a cofiber
sequence

(18) (N R)/p = F{N ARy e, =N Ryp = F2V AR (/) -

As explained in loc. cit., the second map is closely related to the Sen operator.
Recall (see [BL22al Example 6.4.17] and [BMS19|) that THH(R/p) admits a
motivic filtration such that gr’, THH(R/p) = Ni(AR/p)[%]. Taking € = Modp,
says that there is a self-map ©’ : THH(R/p) — X2THH(R/p) whose fiber is
THH(R)/p. Presumably, the cofiber sequence can be shown to respect the
motivic filtration, so taking graded pieces would recover the cofiber sequence (18)).
Given this discussion, it is natural to ask if THH(R/J(p)) admits a motivic filtration
such that is a cofiber sequence of motivically-filtered spectra.

Recollection 3.1.12. Let (Z,[p], p) denote the prism of [BL22al, Notation 3.8.9],
and if R is a p-complete animated Z,-algebra, let pQr denote g,z [5). In partic-
ular, pQpr ~ (qQR)hF;, via the F -action on the prism (Z,[q — 1], [p]). Let ﬁg

denote the diffracted Hodge complex of [BL22a, Construction 4.7.1], so that ﬁg
is isomorphic to pQg/p by [BL22al Remark 4.8.6]. Recall the cofiber sequence of
[BL22a, Remark 5.5.8]:

i " conjyp ©O+i mconjSIP
N p = F VO — F2VQ5.
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The mod p reduction of this fiber sequence produces (18]).

Since THH(R) admits a motivic filtration whose graded pieces are Ni( " g)[2i],
the cofiber sequence motivates the following conjecture (which essentially states

that THH(R/J(p)) is a sheared Rees construction on the conjugate filtration of ﬁg):

Conjecture 3.1.13. Let R be an animated Z,-algebra. Then there is a filtration
Fr THH(R/J(p)) on THH(R/J(p)) such that:
o grl o THH(R/J(p)) = (F{*QR)[2i]; and
e the map O : THH(R/J(p)) — S*THH(R/J(p)) respects the motivic fil-
tration and induces the map © + 1 : Ffonjﬁg — Ffinfﬁg on gri .- and
o gri (THH(R/J(p))[z~1]) ~ ﬁg[%], such that the localization map THH(R/J (p)) —
THH(R/J(p))[z~}] induces the inclusion (Ffonjﬁg)[%] — ﬁg[%] on gr’

mot -

Remark 3.1.14. Recall from Proposition[2.3.2|that there is an equivalence THH(X (p)/J (p)) =~
X(p)[SU(p — 1) x Jp—1(5?%)]. Using this, it is not difficult to show that Conjec-

ture implies that if R is an animated Z,-algebra (and Conjecture holds

for X (p)), then THH(R/X (p)) admits a motivic filtration such that gr’, , THH(R/X (p)) =~

mot

(F;‘anﬁg)[Zpi] ®@pel. If Conjecture were tru for n = 1, then THH(R/T(1))
would admit a motivic filtration such that gri THH(R/T(1)) ~ (F;‘anﬁg )[2pi].

mot

Therefore, THH(R/X (p)) precisely extracts the pieces of the conjugate filtration
on ﬁg which are not automatically split by the Sen operator. From the point
of view of Conjecture [3.1.13] the utility of the discussion in Construction [2.3.9] is
that although describing a higher chromatic analogue of J(p) is tricky (see Con-
jecture 2.3.22), THH(C/X (p")) furnishes a natural higher chromatic and noncom-
mutative analogue of the diffracted Hodge complex when € is a left BP(n)-linear
oo-category.

Remark 3.1.15. We collect some further evidence for Conjecture [3.1.13

(a) Recall that if D is an Fp-linear co-category, then the canonical map
THH(D) — HH(D/F,) is given by quotienting by o € meTHH(F,). More-
over, if R is an animated F-algebra, then gr,  THH(R) ~ (FfondeR/Fp)[Qi],
and F¢THH(R) is a noncommutative analogue of the conjugate filtration
FSMdR g /F,- In particular, the induced motivic filtration on THH(R)/o
has gr? .(THH(R) /o) ~ L% g, [—1].

This picture admits an analogue over J(p). Recall from Proposi-
tion a) that 7,THH(Z,/J(p)) = Zp[z] with |z| = 2. Let € be a Z,-
linear oo-category. One could attempt to define the quotient THH(C/J (p))/x
as a relative tensor product of THH(C/J(p)) with Z,, over THH(Z,,/J(p)).
Unfortunately, this tensor product does not make sense, since THH(Z,,/J(p))
does not naturally acquire the structure of an E;-algebra. However, were
J(p) to admit the structure of an Eg-algebra, the above relative tensor
product would precisely be computing HH(C/Z,) = THH(C) ®run(z,) Zp-
It is therefore reasonable to view the canonical map THH(C/J(p)) —
HH(C/Z,) as a quotient by x. If R is an animated Z,-algebra, then

~

HH(R/Z,) is a noncommutative analogue of the Hodge complex P, - LO% 7 [—n].

1Oy at least the weaker statement that T(1) admits the structure of an Ex-ring.
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Under Conjecture |3.1.13] the perspective that the map THH(C/J(p)) —
HH(C/Z,) is given by “killing ” can be regarded as an analogue of [BL22al

Remark 4.7.14], which identifies grgonjﬁg ~ Lﬁ;é/z,, [—i].
(b) Let R be a smooth Z,-algebra. Then the prismatic-crystalline compari-
son theorem (see [BL22al Remark 4.7.18]) implies that the base-change

F, ®z, Fionjﬁg can be identified with Frob*Fioan;{/p/Fp, where Frob :
R — R is the absolute Frobenius. Under Conjecture[3.1.13] Corollary[2.3.7]
can be viewed as a noncommutative analogue of this result.

(¢) By Proposition[2.3.3] the class  is sent to o € T, THH(F,,) under the map
v : THH(Z,/J(p)) — THH(F,). Since the cyclotomic Frobenius induces
an equivalence ¢ : THH(F,)[1/0] = THH(F,)*?/?, the cofiber sequence

of predicts a cofiber sequence

(19)  THH(C)'”/? @5 F, & THH(C ®z, F,)%/? ' THH(E @z, Fp) 2.

Such a cofiber sequence does indeed exist.

Suppose that the cofiber sequence respects the motivic filtration
when € = Modg. Since THH(R)'2/? ~ HP((R/p)/F,) (see [Mat20,
Proposition 2.12]) and HP((R/p)/F,) has a motivic filtration such that
gt o HP((R/p)/Fp) ~ dR(g/p)/r,[2i], the cofiber sequence would
presumably be related under Conjecture [3.1.13]to the following cofiber se-
quence related to (whose existence was told to me by Akhil Mathew):

(20) R/ = dRr/p)/r, = AR(r/p)/w,-

For completeness, we give an argument for (20)).

PROOF OF THE COFIBER SEQUENCE (20). Recall from [BM22, Corollary 3.16]
that if A is an animated Z,[z]-algebra, there is a cofiber sequence

(21) 7A{i}/:1:—>7A/I{i} —>7A/w{i—1}.

This implies (by setting i = 0 and viewing R/p as the base-change R®z [, Zj, where
the map Z,[z] — R sends x — p, and the map Z,[z] — Z, is the augmentation)
that there is a cofiber sequence

71?,/10 — 7R/p — 7R/p'

The de Rham/crystalline comparison theorems tell us that g/, ~ (r/p)/z, =
(dRR)Q7 where (r/p);z, denotes prismatic cohomology with respect to the crys-
talline prism (Z,, (p)) (i-e., the derived crystalline cohomology of R/p). But then
" r/p ~ dR(r/p)/F,, as desired.

Let us remark that can be constructed using WCartIéE. Indeed, we
can reduce to the case when A is the p-completion of Z,[z] = Og,. Then,
IBL22b| Example 9.1] implies that Spec(Z,) x g, WCartIéf >~ B(G! x G! ). Let
a VVCartIinT — WCartIéT be the tautological map, so that it factors through a

map f : VVCartIinT — Spec(Z,) xXa, WCartgf, which can in turn be identified with
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the map BGf, — B(G% x G,). It follows that there is a Cartesian square

Gf Spec(Z,)

| |

WCart%E — Spec(Zy) xa, WCartgf.

Let J be a quasicoherent sheaf on WCartIéf, and let F/x be the associated qua-

sicoherent sheaf on Spec(Z,) xa, WCartgf. Our goal is to identify the cofiber of
the map F/x — foa*F ~ f. f*(F/x) in the case when F is the Breuil-Kisin twisting
line bundle Owcapur {i} on WCartgf. The preceding Cartesian square along with

the cofiber sequenc
Ot
ZP - ZP<t> = OGg — Zp<t>a 'Vn(t) = "Yn—l(t)

implies that cofib(F/z — f.a*F) can be identified with Owcaur{-1} ® fia*F.
Setting F = Owcarenr {1} and taking global sections produces . O

3.2. Some calculations of THH relative to X (p) and ©. We now calculate
the topological Sen operator for perfectoid rings; these calculations lend further

evidence for Conjecture

Recollection 3.2.1. Let R be a perfectoid ring. Recall that A;,¢(R) = W(R”), so
that L 4, (r)/z, 1S p-completely zero. Let Aitf(R) denote the spherical Witt vectors
WH(R’) of [Lurl8| Example 5.2.7].

Lemma 3.2.2. Let £ be a generator of the kernel of Fontaine’s map 6 : Ains(R) —
R. Let Q%S% — BGL (A (R)) denote the Eq-map which detects 1 — & € Ajg(R)
on the bottom cell of the source. Then there is an equivalence of Eg —Ai‘;f(R)—algebms
between the -adic completion of Aie(R) and the &-adic completion of the Thom
spectrum of the following composite:

ge - 253(3) — 0283 — BGL1 (A ;(R)

).
In particular, there is an equivalence THH (A (R){ /A7 (R)2) =~ Aint(R) £ [Q25%(3)]
of Eo -Ainf(R)g\-algebms.
PRrROOF. Recall from [Mao20, Theorem 1.13] that the Thom spectrum of the

map 0283 — BGL; (A4 (R)) is equivalent to R as an Eo-A (R)-algebra. The
fiber sequence

0283(3) - 0%28% — St
implies that there is a class £ € 7o (2253(3))% and a map S' — BGL;(Q253(3))%
detecting 1 — £, such that its Thom spectrum is R. This implies that there is a
cofiber sequence

(Q253(3))% 5 (0253(3))% — R.

It follows that the &-adic completion (2253(3))9% is equivalent to Aint(R){. The
claim about THH follows in the standard manner using [BCS10]. ]

2Here, we declare y_; (z) = 0.
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Remark 3.2.3. In fact, the calculation from [BMS19, Theorem 6.1] that 7, THH(R) =
RJo] is equivalent to [Mao20, Theorem 1.13| (which constructs R as the Thom
spectrum of the map Q25% — BGL; (4! (R))). The equivalence between these two

statements can be proved similarly to [KN19l Remark 1.5].

Proposition 3.2.4. Let R be a p-complete perfectoid ring. Then there is a p-
complete equivalence

THH(R/X (p)) ~ R[CP™ x QST ®p .
In particular, if 0 denotes the “polynomiarﬂ” generator in degree 2p arising via the
James filtration on QS?**1 and R(u) = m.R[CP] is (the underlying R-module
of) a divided power algebra on a class u in degree 2, then there is a p-complete

isomorphism

7., THH(R/X (p)) ~ R[A](u) @ €.

PRrROOF. Let X (p)¢ denote the &-adic completion of the Thom spectrum of the
composite

QSU(p) — QS?P~1 25 0253(3) — BGLy (4 (R)).
Then, the map THH(X (p)¢) - THH(X (p)) ® Ai—;f(R)g\ is a (p, §)-complete equiv-
alence: indeed, the above composite is determined as an E;-map by the composite

SU(p) — s+ L2809, p2Gy, (Af (R)).
Since 1 — ¢ is a unit in meA;(R) = Ajue(R), it suffices to prove that the map
THH(A;;f(R)g) — A;;f(]-l’)gA is a (p,&)-complete equivalence. But this is clear:
after killing ¢ and tensoring with F,,, we obtain the map HH(R’/F,) — R’, which
is an equivalence since R’ is perfect.

It then follows from Lemma [3:2.2] and the same argument used to prove Theo-
rem a) that there are (p,£)-complete equivalences

THH(Aine(R)? /X (p)) ~ THH(Aine(R)2 /X (p)e) ~ Ains(R)[QS*T x BSU(p — 1)].
Therefore, there are p-complete equivalences
THH(R/X (p)) ~ THH(R/X(p)¢)

= THH(R/A;;f(R)é\) ®THH(Ainf(R)£A/A_+ (R)Q) THH(Ainf(R)é\/X(p)E)

inf

o~ THH(R/A:;AR)Q) ®Ainf(R)2[QSS<3>] Ainf(R)é\[QSQIH-l X BSU(p - 1)}

Since R is perfectoid, [BMS19, Theorem 6.1] implies that THH(R/A{ (R)) ~
R[S3]. The map THH(W (R")) — THH(R) induced by the unit can be identified
with the composite W(R")[Q2S%(3)] — R[QS?], induced by Fontaine’s map 6 :
Aine(R) — R. There is a p-local Cartesian square

(22) 053(3) 0S3

| lH

Q5241 % BSU(p — 1) —— Q52+ x CP® x BSU(p — 1),

13Recall that THH(R/X (p)) is not a ring; the word polynomial simply means the subspace
generated by R[QS?PH1],.
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which implies that

THH(R/X (p)) ~ R[QS?**T! x CP™ x BSU(p — 1)),

as desired. Alternatively, there are equivalences

THH(R/X (p)e) ~ THH(R/A{¢(R)) @run(x ). /at,(m)2) X (P)e
~ R[QS3] ®R[SU(p)] R.

The desired calculation follows from the observation that there is a p-local fibration

Hpyxe

SU(p) ~ SU(p — 1) x §2p~1 2220, g3 270 520+ CP™ x BSU(p — 1)
which is induced by the Cartesian square . O

Remark 3.2.5. Proposition has the following slight variant: if R is a p-
complete perfectoid ring, then there is a p-complete equivalence THH(R/J(p)) =~
R[QS3 x CP™]. The only modification is that one instead has to use the p-local
Cartesian square

QS3(3) ——> Q53

| |

053 — = Q8% x CP™,

which supplies a fibration

St 5 Q8% - Q83 x CP™.

In particular, the above discussion shows that m. THH(R/J(p)) = R[z](uw). This is
compatible with Conjecture [3.1.13

(a)

First, m, THH(R/J(p))[z~'] & R[z*'](%). Since % lives in degree 0, Con-
jecture |3.1.13| predicts that P ~ R(%). This is indeed true: [BL22al,
Example 4.7.6] implies that the diffracted Hodge complex of a p-complete
perfectoid ring R is a divided power R-algebra on a single class in degree
zero.

Second, T(an—22, THH(R/J(p)) is equivalent to @oc,c,, B - v;(u)z" 7,
so that Conjecture [3.1.13| predicts that Ffon‘iﬁg is isomorphic to the R-

submodule of ﬁg generated by {7;(%)}o<j<n. This is indeed true: see (¥,)

in the proof of [BL22al Lemma 5.6.14]. In the same way, (2, —1)p,2np) THH(R/T(1))
is a free R-module spanned by 6%y;(u) for (n — 1 —1d)p < j < (n — i)p.

This includes 7;(u) for (n — 1)p < j < np, but also terms such as 8" and

0" 1y, (u).

Remark 3.2.6. We can understand the calculation of Proposition [3:2.4] more al-
gebraically as follows. There is a p-local fiber sequence

(23)

5771 - Q8% — CPY x Q§%*,

where the second map is given by the product of the canonical map Q53 — CP>
with the James-Hopf map Q5% — QS?*!. The Serre spectral sequence in Z,-

homology for is given by

Ef* = Zy(u) @z, Z,0, e]/e2 = F*ZP[QSS] =Z,l0],



42 S. K. DEVALAPURKAR

where € lives in degree 2p — 1. It is not difficult to show that there is a single family
of differentials given by

d?P (ypn (u)) = € H Ypi (WP, d*P(07) = jp7 e

where the equality is to be understood up to p-adic units. The above description
implies that the map d* : E3, o — E3, 5, 5, 1 is surjective, and its kernel is a
free Z,-module of rank 1 (for example, one can calculate an explicit (n + 1) X n-
matrix with coefficients in Z, which describes d*7). If R is a perfectoid ring, this
discussion determines the Serre spectral sequence in R-homology for . Since
the d?P-differential in this spectral sequence is just the effect of the topological Sen
operator O : THH(R/X (p)) — L?THH(R/X (p)) on homotopy, we see that O
is given (up to p-adic units) by the map

n—1
u) = H Vpi (u)p_l
j=1

Treat u as a variable, and write q“J‘—J, to denote v;(u); the

1-p _ uP" P B (up”’l)p—1 B 27 Lpi(p-1) n—1 \p—1
(U 6u)(7p" (u)) - (pn _ 1)| - (pn _ 1)] - H <p]|> )

Therefore, we may informally write ©p = u'~?9,. The division by u” can be
viewed as accounting for the shift by 2p in ©z. Note that if R is p-torsionfree,
this operator can in turn be interpreted as pdyr. Similarly, under the isomorphism
m.THH(R/J(p)) = R[x](u), the operator O’ : THH(R/J(p)) — X*THH(R/J(p))
can be interpreted as 0,.

A slight variant of the above discussion proves an analogous statement for Z/p™.

Definition 3.2.7. Let Y,, denote the fiber of the composite

HP>™ — K(Z,4) — K(Z/p"',4).

Proposition 3.2.8. Fix an odd prime p. There are equivalences
THH(Z/p" /X (p)) = Z/p"[25*"*" x B*(p" ' Z)] @g/pn /7",
THH(Z/p"/J (p)) = Z/p"[Q2S® x B*(p"~'Z)),

where the map ¥y, ®z,,» THH(Z/p"/J(p)) — THH(F,/J(p)) is given by the map

F,[QS3 x B2(p"~1Z)] — F,[QS3 x B%(Z))] induced by p"~'Z C Z.

MFor the last equality, note that if » > 1, then (p™ — 1)! is a p-adic unit multiple of
]_[;”;11 (p?)P~1. Indeed, observe that p" — 1 = Z;L;Ol pJ(p — 1). By Legendre’s formula for

the p-adic valuation of factorials, we have v, (P! = p;:ll, so that

n_ 1 _p(p— n—1 n—1 ]
R M EDY 1>vp(n<pn>w>,

j=1

as desired.
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Proor. In [Kit20|, it was shown that Z/p™ is the Thom spectrum of the
Es-map
Q3Y, — QBPHP> ~ 0283 — BCGL(S9),
which implies that THH(Z/p") ~ Z/p"[Q?Y,]. Note that there is a canonical map
0%Y,, — QS3, and hence a map Q2Y,, — CP*>. Just as with Proposition we
have
THH(Z/p" /X (p)) =~ THH(Z/p") @run(x (») X (P)
~ THH(Z/p") ®ruu(z,) THH(Z,/ X (p))
~ Z/p"[Q%Y,] ©z)pm 059 (3)) Z/0" QS x BSU(p — 1)].

There is still a p-local Cartesian square

0.53(3) 0%y,

| |

Q8241 x BSU(p — 1) —= QS2P+1 x B2(p"~1Z) x BSU(p — 1),

which implies the calculation of THH(Z/p™/X (p)). The calculation of THH(Z/p™/J(p))

is similar. 0

Remark 3.2.9. One could also deduce Proposition [3.2.8) for n > 2 from Proposi-
tion for F,, using descent and the fact that HH(F,/Z/p") = F,[K(Z/p"~1,2)].

1 n—1

n—1 _
Indeed, the composite S* X— S —% BGL,(S) detects the class (1 — p)?" =
1—p"u € Z; for some p-adic unit u. Therefore, its Thom spectrum is equivalent
to Z/p™. In turn, [Dev23al, Proposition 2.1.6] (or [Beal?|) and the fiber sequence

n—1
str st - BzZ/pn !

imply that F, is the Thom spectrum of a map BZ/p"~' — BGL;(Z/p"™) which
detects 1 — p € (Z/p™)* on the bottom cell of the source. Applying [BCS10]
implies the desired calculation of HH(F,/Z/p™).

Remark 3.2.10. There is a higher chromatic analogue of Proposition [3.2.8] To
explain this, recall from [Lurl5l Construction 3.5.1] that there is an Es-algebra
S((h)) over the sphere spectrum with || = —2. It follows from |[DHL™23. Corol-
lary 3.12| that S((R)) can be upgraded to an Ef-algebra. Tensoring with X (p")
therefore defines an Eff-ring X (p™)((h)); in particular, one can define THH relative

to X (p")((h). The Ey-map X (p") — BP(n —1) — BP(n — 1)!S" factors through
an Ey-map X (p")((h) — BP(n — 1)!5", where h is sent to a complex orientation
of BP(n — 1) (viewed as a class in 7_oBP(n — 1>t51). The calculation of Theo-
rem [2.2.4) implies that

THH(BP(n — 1)!S' /X (p™)((h)) ~ BP(n — 1)!S [252°" 1 x BA,,].

The spectrum BP(n — 1)*%/™ is the quotient BP{(n — 1>ltsl/w7 where [m](h)
denotes the m-series of the formal group law over BP(n — 1),. This can be viewed
as the Thom spectrum of a map S* — BGL; (BP(n — 1>t31) detecting 1 + @ €
7o(BP(n — 1)!")*_ It follows that

(24) THH(BP(n — 1)"2/™ /X (p")(h))) ~ BP(n — 1)*2/™[BS* x Q%" +1 x BA,].
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When n = 1, there is an equivalence BP(0)2/™ ~ (Z/m)'S" and can be viewed
as the equivalence of Proposition base-changed along Z/m — (Z /m)tsl.

Since B2(p"~1Z) = CP> (more canonically, it is the total space of the line bun-

dle O(p™~1) over the standard CP>), Proposition implies that m, THH(Z/p™/J (p)) =
Z/p"[x])(up) with |u,| = |z| = 2. Were Conjecture|3.1.13|to hold, Proposition

would imply that leb Jpn is a (discrete) divided power algebra over Z/p™. In [BL22Db|
Example 5.15], it is shown that if G denotes the PD-completion of G, at the ori-
gin, then Spec(Z/p™)? ® F, = GL @ F,, in the notation of [BL22b]. This implies
that ﬁg/p” ®z/pn Fp is isomorphic to the divided power algebra F,(t,,) for |t,| = 0.
However, as predicted by Conjecture there is in fact no need to reduce mod-
ulo p: Corollary [3.2.15| below says that ﬁz Jpn is indeed isomorphic to the divided

power algebra Z/p"(t,,) for |t,| = 0.

I am grateful to Bhargav Bhatt for the statement of the following lemma,
which is analogous to the calculation that if R is a commutative ring and = € R is
a regular element, then there is a p-complete equivalence dRp/,/p ~ R(x)/x (see
[Bhal2l Theorem 8.4]). The argument for Lemma below is my interpretation
of Bhatt’s explanation. The topological discussion above can be regarded as an
analogue of the calculation that HH(R/z/R) ~ R[CP*]/x. We will freely use
notation from [BL22al, BL22b]| below.

Lemma 3.2.11. Let (A, I) be a transversal prism (i.e., A/I is p-torsionfree). Let
x € A be an element such that x (mod I) is regular in A := A/I, and such that
(x) C A is ¢-stable. Then WCartjf(l’z)/A is p-completely isomorphic to G x
Spf(A/(I,x)), so that  4/(1,z)/a = AJ(I,x)(t) with |t| = 0.

Proor. By [BL22bl Proposition 5.12|, the map WCartﬁf(Lz)/A — Spf(A/(1,x))
is a split gerbe, banded by TA/(I,x)/Z{]‘}ﬁ' In this case, since z (mod I) is a reg-
ular element of A, we see that Lyjraeyz = (z)/(z*)[1], so that Thyrmy/a =
Spf SymA/(I@)(LA/(Lm)/Z)I/} is isomorphic to QG, over A/(I,z). It follows that
WCartﬁﬁLr)/A is isomorphic to a trivial G¥-torsor over Spf(A/(I,z)). Since

A/(I,z)/A is the global sections of the structure sheaf of WCartﬂf(I)I)/A, the lemma

follows. O

Remark 3.2.12. In fact, the conjugate filtration FgonjiA I.z)/A 1s isomorphic to
the divided power filtration on A/(I,x)(t) under Lemma [3.2.11

Remark 3.2.13. Sticking with the assumptions of Lemma let us mention
without proof that Lemma [3.2.11] is also a consequence of [BS19l Example 7.9],
which states that 4/(7,2)/4 = A{§}E\p,1)' If I = (d) is principal, the p-complete
isomorphism

B A/LLa) ) = apraya 2 A {;}2 /1

leads to an I-adic Bockstein spectral sequence
A

(pd)’

B = A/ 0@ = A (S @ a{t)

p

where d represents d on the Fi-page.
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The map 3 sends y,n (t) — 0™ (%) (up to p-adic units). This can be proved by
showing that in the setting of Lemma [3.2.11} ¢(0"(%)) € (d) € A{5} if n > 0 (see
Lemma [3.2.14] below). The fact that

(@)= (= )

then implies that 6"(%)? = —pé™*'(2) (mod d). Therefore, the elements 6™ (%)
can be used to define divided powers of & (mod d). In particular, we obtain the
desired map 8 : A/(I,z)(t) — A{ 3}&, /d, but further work is required to show
that it is a p-complete isomorphism.

Lemma 3.2.14. Fiz notation as in Lemma|3.2.11, Then ¢(6™(%)) € (d) € A{%}.

PRrROOF. Let t = 5. The desired claim can be proved by induction on n. For
the base case, we need to show that ¢(¢) € I. By reduction to the universal case, we
may assume that (p,d) is regular in A. Then [AL20, Lemma 3.6] implies that the
sequence (d, ¢(d)) is regular in A. Since (z) is ¢-stable, we see that d divides ¢(z);
it then follows from the formula ¢(d)é(t) = ¢(x) that d divides ¢(t), as desired.

For the inductive step, observe that

pe(8" (1) = po(6(6" (1)) = &* (8" (1)) — ¢(6" ())"-
The inductive hypothesis says that ¢(6™(t)) € (d) for every k > 1, so that d divides
pd(0"TL(t)). Since (p, d) is a regular sequence, this implies that d divides ¢(d"T1(t)),
as desired. g

This implies the following result, which is also proved in [Pet23] Lemma 6.13].

Corollary 3.2.15. There is an isomorphism Spec(Z/p™)? = Gt x Spec(Z/p™) of
Z/p™-schemes. In particular, the scaling action of G% on G¥ over Z/p" gives an
isomorphism WCartg}ﬂpn ~ G /GE of Z/p"-stacks.

PROOF. Recall that 7Z/pn/zp 7l = lep/pn Lemmal3.2.11|implies that 7Z/pn/zp 7 =
Z/p™(t) with |t| = 0; this gives the desired claim. (It is useful to view ~,m (t) as a
p-adic unit multiple of 5m(p7;), as described in Remark )

Alternatively, consider the transversal prism (A, I) = (Z,[q — 1], [plq), and let
z = (¢ —1)™P~Y. Note that ¢(z) € (), so () is ¢-stable. Then A/T = Z,[(,],
and A/(I,z) is isomorphic to Z,[C,]/(¢, — 1)~ = Z/p"[(,] since the p-adic val-
uation of (¢, — 1)*(P=1) is n. Tt follows from Lemmathat 7z/pn[gp]/zp[[q—1]] =
Z/p"[Gp)(t') with [t'| = 0. There is an action of Z* (and hence F)¥ C Z>) on (4, I);
taking F-fixed points produces an isomorphism

- ~ ( h x ~ 3
2/v /2,07 = ( 2/016,1/2,10-11)""" = Z/P" ()
with |t| = 0, as desired. Note that as described in Remark|3.2.13] the divided power

q—1)"@=D

vpm (t') can be viewed as a p-adic multiple of 6’”((T) = 5m((q*1q):7_plw). O

An alternative (and more hands-on) proof of Corollary [3.2.15|is given in Ap-
pendix [B} this alternative argument is also presented as [Pet23, Lemma 6.13].

Example 3.2.16. Let us describe the topological Sen operator on THH(Z/p™ /X (p))
for n > 2 (recall that p > 2). This is equivalent to describing the Serre spectral
sequence in Z/p™-homology for the fibration

S2P=1 5 0%V, — QS*PTL x B(pnT'Z).
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Note that this fibration is an analogue of the fibration .

It will be simpler to analyze the Serre spectral sequence in Z,-homology, since
all the differentials in the Serre spectral sequence in Z/p"-homology arise from the
Serre spectral sequence in Z,-homology. The analysis is similar to Remark
the Serre spectral sequence runs

(25) E2, = Zy(u,) ®z, Zpl0, €]/€* = 1. Z,[Q°Y,],

where € lives in degree 2p — 1 and wu, lives in degree 2. There are several ways
to determine the differentials in this spectral sequence. Our approach will be to
describe the pattern of differentials by first calculating 7. Z,[Q?Y,,]; in turn, we will
do this by computing 7.C*(Q%Y,,; Z,). For this, we use the Serre spectral sequence
for the fibration

BZ/p" ' — QY — QS5
Since H*(BZ/p"~Y,Z) = Z[c]/p" 'c with |¢| = 2, the Serre spectral sequence
collapses on the Fa-page, and we find that 7,.C*(Q%Y,,; Z,) = Z,(z)[c]/(x — p"~'¢)
with |z| = 2. (If n = 1, then Q?Y,, ~ Q53 and the cohomology ring is Z,(z).) For

n > 2, this is isomorphic to Z,(y)[c]/y, where y = x — p"~!c. Indeed, observe that
if n > 2, then
J_i(n—1)
p i
V(W) =Y i)
i=0 ’

is a well-defined class in Z,(x)[c]/(z —p"~'c) since p has divided powers in Z,, and
that these classes form a basis for Z,(z)[c]/(z — p"~'c) as a Z,[c]-module. Recall
that in homological grading, there is an equivalence:

Z,(y) /)y ~ Zpp & €D Zp/n{m(y) }—2n),

n>1

which implies that if n > 2, then

k : —iv
H (02, Z,) & {Zp S2) @j:l Z,/j{v;(y)c*=7} i=2k >0 even
0 else.

Using the universal coefficients theorem, we find that if n > 2, then

Zp 1€ 2Z20
@ Z,/j i=2k-1.

The generator of my;Z,[Q%Y,,] is the linear dual to ¢/ € Z,(y)
erator of mo,_1Z,[Q2Y,,] which is killed by j is dual to v;(y)
homotopy groups m.Z,[Q?Y,] are independent of n if n > 2 (
these groups do depend on n).

Let us now return to the Serre spectral sequence . Comparison with the
Serre spectral sequence for the fibration (i.e., with the topological Sen operator
on THH(Z,/X (p)); see Remark [3.1.6) forces the differentials in to be given by
(up to p-adic units):

T Zy[QY,] = {

[¢]/y, while the gen-
c*=7. Note that the
but the generators of

k-1

d2p('7p’“ (un)) = pn_le H Vpi (un)p_l = pneaug (7pk (un)), d2p(9j) = jpej_lﬁ
j=1



THH, BP(n), AND A TOPOLOGICAL SEN OPERATOR 47

Reducing modulo p™, we get the topological Sen operator on THH(Z/p" /X (p)) for
n > 2:

O Ypr (up) — p"~ L nyp, Up) 1, 0:¢ r—)jpt?j*l.

Observe that this acts as “p"0,z". Of course, one can similarly deduce the action
of the topological Sen operator on THH(Z/p™/J(p)). This recovers the calculation

=0 Z/ged(j,p") even j >0,
m THH(Z/p") = { D=0 Z/ ged(j,p") odd j >0,
0 j<0.

Another example of the topological Sen operator comes from studying complete
DVRs, where the relationship between THH relative to J(p) and the diffracted
Hodge complex predicted by Conjecture [3.1.13] can be seen directly.

Example 3.2.17. Let R be a p-torsionfree complete DVR of mixed characteristic
(0,p > 0) whose residue field k is perfect. Then we have

. THH(R/X (p)) = HH.(R/Z,)[0] ®z, e.*,
and the map © : 7, THH(R/X (p)) — ms_2, THH(R/X (p)) sends 67 — jp#i—1. To
compute the action of the topological Sen operator on the remainder of THH(R/X (p)),
it will be simpler to assume that 7'(1) is an Eo-ring and work instead with THH(R/T'(1));
this is merely cosmetic, and it is not difficult to modify the below argument to use
THH(R/X (p)) instead. Then, we have n,THH(R/T (1)) = HH..(R/Z, )[ ]. We will
compute THH(R) using the topological Sen operator on THH(R/T(1)) and .
Let m € R be a uniformizer, let E(u) € W(k)[u] be its minimal polynomlal and
let E'(u) € W(k)[u] denote its derivative with respect to u. Recall that R =
W (k)[u]/E(u), that W (k) is étale over Zp, W*HH(W(k)[[u]]/W(k)) Aw () [ (du)
with |du| = 1, and m,. HH(R/W (k)[u]) = , where o := 0?(E(u)). The tran-
sitivity sequence for the composite W (k) — W( )[[u]] — R implies that HH(R/W (k)) ~
HH(R/Z,) is the fiber of a map R(og) — S?R(og) sending v, (0g) — E'(7)yn-1(0k).
In particular,

R n =0,
. HH(R/Z,) = { R/E'(x) n=2j+1, j>0,
0 else.

Let us denote the generator of ;1 HH(R/Z,) by z;, so that v;_1(cg) € m; Y2R{og)
is sent to z; under the boundary map X%?R(cg) — YHH(R/Z,). We then have

R-0 n=2pj,j >0
(26)  m THH(R/T(1) = { Doy )y RIE () - 25 1 =2j— 1,5 >0,
0 else.

From this, we can describe the topological Sen operator on THH(R/T'(1)). For this,
it will be useful to rephrase the above calculations somewhat, and use J(p) instead
of T'(1). It is easy to compute that =, THH(R/J(p)) = HH.(R/Z,)[z], where x is
the class in degree 2 from Proposition 2:3.3] In other words,

THH(R/J(p) = | n=2j for j >0,
Tn = . . .
®O§i<j R/E'(m) - zj_ix" n=2j—-1,j>1
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Since HH(R/Z,) is the fiber of a map R{cg) — £?R(og), it follows that there is a
cofiber sequence

(27) THH(R/J(p)) — R{og)[x] = S*R{og)[],

where we have denoted the second map by V. The map V is given on homotopy
by a derivation, sending g + E'(7). Informally, THH(R/J(p)) can be written as
R{og)[z]V=0.

The topological Sen operator © : THH(R/J(p)) — X2THH(R/J(p)) is de-
scribed on homotopy by the operator on R(og)[z] sending z — nz"~!. Note
that this operator commutes with V (so that it does indeed define an operator on
m. THH(R/J(p))). Observe that since THH(R) is the fiber of © : THH(R/J(p)) —
Y2THH(R/J(p)), and THH(R/J(p)) is the fiber of V : R{og)[x] — L2R{og)[z],
we can write THH(R) as the total fiber of the square

v

(28) R(op)[z] Y2 R{op)[x]

X X

Y2R(op)[z] ——= S*R{op)[a],

where the map denoted © sends 2" + nz" 1. In turn, it follows that THH(R) is
also the total fiber of the square

(29) R{og)[z] — = S?R{op)z]

le+v J{@-&-V

S2R(op)[r] ——> S4R{op)[x].

The operator V 4+ © acts on R{og)[x] by
(30) V40 : 2"y (or) = nz" My (og) + B ()2 " Ym-1(0g).

Let us now invert z, and write y = gz~ in R{og)[z*!]. Then y has divided powers
and lives in degree 0, and there is an isomorphism R(og)[z¥!] = R(y)?y) [zF!]

on homotopy. We can formally define ® on z™ for n < 0 by the same formula:
O(z") = naz"~ 1. Tt follows from that ¥ := z(V + O) sends

v Wn(y) — _nx_n'yn(o'E) + El(ﬂ—)m_n—i_l')’nfl(oE) = E/(W)'Ynfl(y) - n’Yn(y)

We claim that the action of —td; on R{(1 —t)E’(rw)) agrees the action of ¥ on
R(y)?y), if we identify y = (1 — ¢)E’(7). Indeed:

Yn(y) = Y ((1 =) E' (1)) = —E'(7)"
R 1O ) L O B KRN ¢ el

== ~ ¥ ( mn—10 " )

E' (1)1 ((1 = t)E' (7)) = nyn((1 — 1) E' (7))

E' (1) yn-1(y) — ().

£
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In particular, we can rewrite the square (29)) after inverting x as

R{(1 = t)E'(m))[a*!] ——= R((1 = ) E' (m)) [2™"]

ltat \Ltat

R((1 = t)E'(m))[a*!] — R((1 = ) ' (m)) [2*],

where the horizontal maps act by sending v,((1 — t)E'(7)) — E'(7)yn-1((1 —
t)E'(m)). The fiber of either of the horizontal maps in the above square can be
identified with THH(R/J(p))[z~1].

Using the above description of ©, one can calculate (with some tedium) that

R n =0,
m THH(R) =< R/jE'(r) n=2j-12>0,
0 else.

This is exactly the calculation of 7, THH(R) from [LMO0O0, Theorem 5.1] (reproved
in [KIN19, Theorem 4.4]).

The above discussion can be compared to [BL22b, Remark 9.7], which says
that if X = Spec R, then WCarty" = X x BG, where G = {(a,t) € G xGf |t—1 =
E'(m)a}. The canonical map WCart’y' — X x WCart"™ 2 (BG! )x can be iden-
tified with the map induced on classifying stacks by the quotient map G — G&n of
group schemes over X. Recall that the diffracted Hodge stack X ? can be identi-
fied with WCarty' X yoarenr Spec(Zy,) = WCarty X yeaenrx x X. In particular,
XP =~ (G!)x/G, ie., the classifying stack of the group scheme G&[E'(7)] = {a €
G!|E'(7)a = 0}. One can show from this description that the cohomology of the
diffracted Hodge complex ﬁg ~ T (BGE[E'(7)]; O) is given by

~ R * =0
Ap = ’
e {@nle/E%w) k=1,

Upon 2-periodification, this can be identified with 7, THH(R/J(p))[z ] (which is
additively the 2-periodification of m,HH(R/Z,)), as predicted by Conjecture

Note that the extensions in the following long exact sequence in homotopy for
are always nontrivial:

(31) - = mo, THH(R/T(1)) — ma(j_p THH(R/T(1)) = m;_ THH(R) —
7T2],1THH(R/T(1)) — Wg(j_p)_lTHH(R/T(].)) — sz,QTHH(R) — e

For example, when j = p, there is a long exact sequence
mop THH(R/T(1)) = R-0 — moTHH(R/T'(1)) = R — mop,—1 THH(R) — m9,—1 THH(R/T(1)) — 0,
which in particular gives a short exact sequence

0 — R/p — mop—1THH(R) — R/E'(7) = 73,1 THH(R/T(1)) — 0.

Since o, 1 THH(R) = R/pE’(r), this extension must be nontrivial.
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3.3. Relation to the p-de Rham complex. We now describe some addi-
tional calculations which give further evidence for Conjecture [3.1.13]

Remark 3.3.1. Assume that R is the p-completion of Z,,[t]. Forthcoming work of
Arpon Raksit (JRak20]) shows that (a completion of) ¢{2r arises as the associated
graded of a motivic filtration on HP(ku[t]/ku). In fact, Raksit studies HP(A[t]/A)
for a general E,.-ring A with even homotopy groups.

Using Remark one can show that (a completion of) pQp arises as the
associated graded of a motivic filtration on HP(BP(1)[¢t]/BP(1)). Moreover, the
class p is identified as the image of v1A?~! in the associated graded. For the sake of
completeness, let us explicitly compute 7, TP(Z,[t]/X (p)). As in Example
it will be convenient to assume that 7(1) is an Ef-ring and work instead with
THH(R/T(1)); again, this is merely cosmetic. We first need the following result,
which is a special case of [Rig21] Proposition 3.1.1] and S'-equivariant Poincaré
duality for S*/u,,.

Lemma 3.3.2. Let X be a bounded-below spectrum equipped with an action of S*.
Then there is an equivalence

tst

@X ® (Sl/,LLn)+ ~ lim (ETSkX)tZ/n .

k—o0
n>1 n>1

Example 3.3.3. Let S be the sphere spectrum. Recall that Z,[t] ~ Z, ® S[t],
so that THH(Z,[t]/T(1)) ~ THH(Z,/T(1)) ® THH(S[t]). Let THH(S[], (t)) de-
note the fiber of the map THH(S[t]) — THH(S) ~ S induced by the augmen-
tation S[t] — S sending ¢ — 0; note that the map THH(S[¢]) — S admits an
S'-equivariant splitting. Similarly, we write THH(Z,[t]/T(1), (t)) to denote the
fiber of the map THH(Z,[t]/T(1)) — THH(Z,/T (1)) induced by the augmentation
Z,[t] — Z,. Then THH(S[t], (t)) ~ D,,5, (S /tin)+, so that
(32) )
THH(Z, [t/ T(1), (+)) = THH(Z,/T(1)) & THH(S[], (1)) = ED(S" /1tn)+ €THH(Z, /T (1).
n>1
It follows from Lemma that there is an equivalence
THH(Z,[t]/T(1), ()" ~ Jim P (<, THH(Z, /T(1)))"*/".
— 00
n>1

Using Theorem a), we have T<o, THH(Z,/T (1)) ~ Z,[Jx(S?")]. A simple
calculation using Theorem [2.2.4(a) shows that there is an isomorphism

e (T2 THH(Z,, /T(1))) "2/ 22 70, (BP(1) /o T1) 2/ 22, (7o (1) BP (1)) 2/

Let (n)(h) = @7 so that m,BP(1)*2/" = Z, [vi]((h)/(n)(h). In analogy to
q = Bh+ 1, if we define p = v1 AP, then (n)(h) defines an element of Z,[p] which
we will denote (n);. We conclude that
T (T2 THH(Z,, /T(1))2/" = Z, [P (1) / (7, (n) ().
It follows that
w THH(Z, [1/7(1), (0)°' =l @S2, [71(1)/ G+ (n)7),

n>1
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i.e., that

T TP(Zy[t)/T(1)) = Z,[P)(7) x lim (P SZ, [1(h)/{n)3-
n>1

In a manner similar to Example[3.3.3] one calculates that if we write Z,[5]((k)) =
Z,[q—1]((h) by setting ¢ = 1+ Bh, and (n)g,, (h) = M is the divided n-series
of the rescaled multiplicative formal group law x + y + (¢ — 1)xy, then
(33)
m HP (kuy [t] /kuyy) = Zp[[q—l]]((ﬁ))xkllﬂgo@ 2Zylg—1](R)/((a=1)**, (n)a,. ().

n>1

Moreover, 7, HP(BP(1)[t] /BP (1)) 2 =, HP (ku) [t] /ku})F7 , where FX acts on HP (ku/) [t] /ku)))
via its action by Adams operations on ku;,\. Note that since F; has order coprime
to p, taking F-invariants preserves small limits and colimits after p-localization.
In particular, =, HP(BP(1)[t]/BP(1)) is isomorphic to m,. TP(Z,[t]/T(1)).

The following is also a consequence of the forthcoming work of Arpon Raksit
(|Rak20]) mentioned above.

Lemma 3.3.4. There is an Z; -equivariant isomorphism
H*(¢Q,1) (1) = Zpla — 11(7) x P 2Zpla — 11(7)/(n)a,. ().
n>1

PROOF. For the formal group law over ku;\7 we have

n

e ) =3 (7)1 = bl € 2,10,

i=1
where ¢ := 1+ Sh. The claim now follows from the fact that the differential V, in
4z, sends " — [n] " dt. O

In particular, 7. HP(BP(1)[t]/BP(1)) = n. TP(Z,[t]/T(1)) is a 2-periodification
of a completion of H*(pQz ;). This calculation leads to the following expectation
related to Conjecture [3.1.13

Conjecture 3.3.5. Let R be an animated Z,-algebra. Then TP(R/X (p)) admits a
motivic filtration ¥, TP(R/X (p)) such that gr’, ,TP(R/X (p)) ~ AR/me [21] ®r

- mot mot
e®, where R/Z,[7] 5 the Nygaard completion of pQlg.

We now turn to a higher chromatic analogue of (part of) this picture.

Definition 3.3.6. Let R be an Eo-ring, and equip HH(R[t]/R) := THH(S[]) ® R
with the S*-action inherited from THH(S[t]) and the trivial action on R.

Warning 3.3.7. If R is only an E,-ring, one cannot define Hochschild homology
relative to R; in particular, the notation HH(R][t]/R) is rather abusive. As explained
in [DHL™'23, Corollary 2.9], if R’ is an E;-R-algebra, then HH(R'/R) only exists
(and has a natural S'-action) when R is a framed Eg—rin In other words, if R
is merely an Eq-ring, it would not be clear how to define HH(R][t]/R), had we not

15Suppose that R is an Es-algebra, and C is an R-linear oo-category. The choice of a
framed knot in R3 also defines an E,_3-map f g1 R — R, and hence allows one to define rel-
ative Hochschild homology HH(C/R). However, this does not define an S'-action on HH(C/R)!
Thanks to Robert Burklund for this point.
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known that R[t] admits a lift to the sphere spectrum. This leads to the following
unfortunate warning: if R is an Eff-ring with a nontrivial S'-action, then the
(more natural) circle action on HH(R[t]/R) arising via the S'-action on R cannot
be necessarily identified with the circle action from Definition However, for
this article, we will only use the circle action from Definition [3.3.6)

View BP(n — 1)[t1,--- ,t;] asa Zéo—graded ring, where t; has weight (0,--- ,1,---,0).
Then, define HP# (BP(n)[t1, - - - ,t,]/BP(n)) to be the S'-Tate construction of HH(BP(n)[t1, - - - ,t;]/BP(n))
taken internally to Zj>0-graded BP(n)-modules. Similarly, define TP® (BP(n — 1)[t1,-- -, J]/X( ™))
to be the S'-Tate construction of THH(BP(n — 1)[ty, - - - ,ti]/X (p™)) taken inter-
nally to Zj>0—graded BP(n — 1)-modules. Then, related to Conjecture we

have the following result (which, when n = 0, is a very special case of the main
result of [PV19]):

Proposition 3.3.8. There is a p-complete isomorphism of ijo—gmded modules
equipped with a map from m,BP(n)tS' [BA,] = 7, TP(BP(n — 1)/X (p")):
T HP8 (BP(n)[t1, - - ,t;]/BP(n))[BA,] = 7. TP (BP(n — 1)[t1,--- ,t;]/X(p")).

The map TP (BP(n — 1)[t]/X(p™)) — TP(BP{(n—1)/X(p")) is an equivalence
after K (n)-localization.

PrOOF. For simplicity, we assume that ;7 = 1 and write ¢ instead of ¢;. In
the graded setting, we may commute the S'-Tate construction with the infinite
direct sum (i.e., Lemma is not necessary). It follows that there are graded
equivalences

TP (BP(n — 1)[1]/X (p"), (1)) ~ @ STHH(BP(n — 1)/ X (p"))"*/™ (m),
m>1
HP® (BP(n)[t]/BP(n ~ @ £BP(n)%/™ (m).
m>1
The desired result now follows from Theorem M(a) The second statement fol-

lows from the above equivalences and the fact that LK(n)(BP<n>tZ/ pm) = 0 by
Lemma [3.3.9 O

The proof above used the following (well-known) fact.

Lemma 3.3.9. Let BP(n) denote any form of the truncated Brown-Peterson spec-
trum. Then we have L (,)(BP(n)*2/?™) = 0.

Proor. We first observe that BP(n)*%/P" depends only on the p-completion
of BP(n); indeed, the obvious variant of [NS18, Lemma I1.2.9] shows that if X
is a bounded-below spectrum with Z/p™-action, then X1Z/P™ is p-complete, and
the map X*4/P" — (X;\)tz/pm is an equivalence. Since all forms of BP(n) are
equivalent after p-completion by [AL17|, we may therefore reduce to proving the
claim for a single form of BP(n).

To show that L, (BP(n)!%2/?") = 0, it suffices to show (since BP(n)%/P"
is an MU-module) that (m.BP(n)2/?" [L])/(p,-- v, 1) = mk(n)2/P" [ L] = 0.
Recall that 7,BP(n)!%/P" = BP(n >*((h))/[pm](h) We will work with the form of
BP(n) such that the associated formal group law over 7,BP(n) induces the Honda
formal group law over m.k(n). Then, the p™-series of the formal group law over
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nm _q . . pn:171
m.k(n) satisfies [p™](h) = v,"" " RPT; so mk(n)t2/PT 2 Folu,](R) /v . In
particular, v,, is nilpotent in k(n)"*/7", so that m.k(n)"?/?" [ L] = 0. O

Remark 3.3.10. In general, 7,HP(BP(n)[t]/BP(n)) looks like a completion of the
2-periodification of the cohomology of the following two-term complex:

(34) BP(n). [A][t] 2 BP(n).[A][t]dt, V : ¢™ s [Eem @ pm—1gy

This is a variant of the g-de Rham complex, and was first considered by Arpon
Raksit (in forthcoming work). Note that an analogue of can be defined for a
formal group law F(x,y) over any commutative ring A:

(35) FQap/a = (A[[h]][t] Y, A[h]][t]dt) R L L

we will study basic combinatorial properties of such complexes in [DM23]. After
base-changing to Q, the operator V can be characterized by the formula htV =

expp (toilogr(h)).
We also have:

Proposition 3.3.11. If C is a left BP(n — 1)-linear co-category, and C[t] denotes
C®ppn-1yBP(n — 1)[t], then Conjecture implies that the map L,y TP (C[t]/ X (p™)) —
L) TP(C/X (p™)) is an equivalence.

PROOF. Observe that

THH(C[]/X (p")) ~ THH(C/X (»"))(0) & ) (5" /pm)+ @ THH(E/X (p"))(m),

m>1

so that
TP (C[t)/X (p")) ~ TP(C/X (p™))(0) ® €D STHH(C/X (p™))"*/*" (m).

m>1

Now, Conjecture implies that THH(€/X (p™))*2/?" is a BP(n)*%/P" -module.
But Ly () (BP(n)%/?") = 0 by Lemma so that L, TP (C[t]/X (p")) ~
Ly TP(C/X(p™)), as desired. O

Example 3.3.12. Let n = 0, and suppose C is the oco-category of quasicoherent
sheaves on an F,-scheme X. Then Proposition [3.3.11]says that the map TP®" (Al x
X) — TP(X) is a rational equivalence. This is generally not true in the non-graded
setting.

Remark 3.3.13. Note that the functor Lg)TP is not nil-invariant; the same
is true of the functor Lg,)TP(—/T(n)) on BP(n — 1)-algebras. Indeed, [Hor20,
Theorem 1.1] says that the map Ly (o) TP(Fp[t]/t*) — Ly ) TP(F,) ~ Q;Sl is an
isomorphism if and only if k is a power of p. We can also see this at the level
of algebra by calculating the crystalline cohomology of F[t]/t*. If R denotes the
p-completion of the PD-envelope of the quotient map Z,[t] — F,[t]/t* (so that R =

. A

Z, [t, 2> 1] ), then [BOT8| Theorem 7.23] implies that Terys((F,[t]/t¥)/2Z,)
’ P

is quasi-isomorphic to the de Rham complex 3, 1z, Note that R is additively

kj+i

it

isomorphic to the p-completion of @p;<) 1 B0 Zpi !
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Since the derivative of tk;:r’ is (kj + Z)L;l, which simplifies to k%
when i = 0, we find that molerys((Fp[t]/tF)/Z,) = Z,, and
A
tk)(]"rl) 1
AL (B 0//2,) = | @20 { ]
7>0
P
A
tkj—‘r’L
ol @ Pzy/kj+i+1)- { }
0<i<k—1;>0 ,

For instance, suppose k = p. Then pj +i+1 =441 (mod p), which is never zero
since 0 < i < p — 1. Therefore, the second summand is zero since pj + i+ 1 is a p-

. . N pG+H-1 T\
adic unit, and we find that 7_1Tcys((F,[t]/t7)/Z,) = (@jzo Z/p- {t , }) .

T
o : zo b
However, if k is not a power of p, the second summand contains a non-torsion piece;

for example, if k¥ = 2 and p is odd, the second summand contains the p-completion
of @,,~¢Z/p™, which is non-torsion.

Example 3.3.14. Let n = 1; then, Proposition [3.:3.11] says that Conjecture 2:2.19]

implies that up to a Nygaard-type completion, Ly 1)TP® (R[t]/X (p)) = Lk 1)TP(R/X(p))
for R being an E;-Z,-algebra. In the non-graded setting, this is generally not true;

this is in contrast to [LMMT20], Corollary 4.24] (for instance), which says that

K (1)-local algebraic K-theory is A'-invariant on connective K (1)-acyclic ring spec-

tra (in particular, on connective Eq-Z,-algebras).

Let us now pivot somewhat to a slightly different topic, working at the famed
prime p = 2. Then pQr = ¢, and there is an interesting action of Z/2 C ZJ
on ¢Qr sending ¢ — ¢~ '. If we view ¢ as the Chern class (in K-theory) of the
tautological line bundle on CP*, this corresponds to the action of Z/2 on CP*
given by complex conjugation. This motivates the following discussion:

Remark 3.3.15. We expect that most of the results and conjectures in this ar-
ticle continue to hold with Z/2-equivariance, where “real” topological Hochschild
homology THHp is interpreted to mean the construction described in [DMPR17|,
HHK "20|. Recall that Z/2 acts on SU(n) by complex conjugation; we will denote
this Z/2-space by SU(n)r. Let o (resp. p = o + 1) denote the sign representation
(resp. regular representation), and if X is a Z/2-space, let Q7 X denote the space
of maps Map(S?, X). There is a Z/2-equivariant E,-map

2°SU(n)r ~ Q’BSU(n)r — Q’BSUgr ~ BUR,
which equips its Thom spectrum X (n)g with the structure of an E,-ring. One can
show that the equivariant Quillen idempotent on MUR restricts to an idempotent

on X(n)r, and we will write T'(n)r to denote the resulting summand of X (2")g
Moreover, ®Z/2T(n)r ~ y(n) as 2-local E;-algebras.

We then expect:

Conjecture 3.3.16. The following are true:

(a) T(n)r admits the structure of an E, x U(1)g-algebra, and X (2")r splits
as a direct sum of shifts of T(n)r such that the inclusion T(n)r —



(b)

(36)
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X(2"mr of the unit summand is a map of E,-algebras. In particular,
THHR(BP(n — )r/T'(n)r) exists and admits an U(I)R—actioﬂ.

Let BP(n)r denote the Real truncated Brown-Peterson spectrum. Then
there are equivalences

THHg (BP(n — 1)r/T(n)r) ~ BP(n — 1)r[QS?" 711,

(37) THHR(BP(n — 1)r/T(n — 1)r) ~ BP(n— )r ® @ =*" 77" 1BP(n)r/j

(c)

(d)

T

(¢)

(f)

Jj=1

of BP(n — 1)r-modules. The second equivalence requires n > 1. Further-
more, the class in mon,THHr(BP(n — 1)r/T(n)r) induced by the map
E:S8%"r — QS%"PH1 detects o”(v,,).
There is a Z/2-equivariant space K, and an equivariant fibration

St K, s 82 et
such that Ko = QS and K; = QSPHYp+1). For n = 0, this is simply
the EHP sequence for S°. The boundary map 02627+, g2r -l of
the underlying fibration is degree 2 on the bottom cell of the source, and
(Kp)%? = K,,_1 as (S%"P~1)2/2 = §2"=1_fibrations over (252" PT1)%/2 =
QS+,
For any Z/2-equivariant E, -T'(n)r-algebra R, there is an equivariant cofiber
sequence

HHg (R/T(n — 1)r) — THHR(R/T(n)r) — =* *THHR (R/T(n)r),
where the second map is a Z/2-equivariant analogue of the topological Sen
operator.

Let

TPr(BP(n — 1)r/T(n)r) := THHR(BP(n — 1)g /T (n)g)tc> V(IR

where the notation “tc,U(1)r” means the parametrized Tate construction
from [QS21) Remark 1.17]. Then there is a Z/2-equivariant equivalence

TPr(BP(n — 1)r/T(n)r) ~ ]_3,]_:><n>1;fo(1)R7

where U(1)r acts trivially on BP(n)R.

Let R be a 2-complete animated commutative ring, equipped with the trivial
Z/2-action. Then there is a Z/2-equivariant filtration on TPr(R/T(1)r)
such that

ot TPR(R/T(1)R) = ( ryzfe-11)5 [21) = (aQ5)5 21],
where the Z/2-action on the right-hand side is obtained by viewing Z/2 C

Zy 2 7/2 x (1+ 4Z5) and using the Z -action on the 2-completed q-de
Rham complez.

Example 3.3.17. Note that [DMPR17], Theorem 5.18] and [HHK™ 20, Theorem
A.1] prove for n =0 and for n = 1, respectively.

Z/2

Remark 3.3.18. We expect that BP(n)g'“®T(n) is concentrated in even degrees.
Proposition 3.3.19. The equivalence is true for n = 1.

6Note that U(1)g = S°.
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PrOOF SKETCH. This can be proved analogously to Theorem a)forn =1
using the equivariant Toda fiber sequence

SPT 5 QSPH(p 4+ 1) — QS

of [Dev23al, Equation 7.1][7] Indeed, recall from [Dev23a, Example 7.1.3] that
X (2)r is the Thom spectrum of the map Q75T — BGL1(S) detecting 77 €
7msS. By an argument similar to [BCS10], this implies that THHR (X (2)r) ~
X (2)r[S?*7]. Therefore:

THHR(Z/X (2)r) =~ Z[QS*" (p + 1)] ®x(2)n[s0+] X (2)R
~ Z[QSp+1 (p+1)] Qzsoto] L~ Z[QSQP'H}7
where the last equivalence uses the equivariant Toda fiber sequence. O

Example 3.3.20. Let us note some additional evidence for Conjecture a):
if X is a Z/2-space, then the cofiber sequence (Z/2); — S° — S° of spaces
implies that (27X)%/2 is equivalent to the fiber of the canonical map X2%/2 —
X. In particular, since (SU(n)r)%/?> = SO(n), we see that (2°SU(n)r)?%/? ~
Q(SU(n)/SO(n)). Since geometric fixed points preserves colimits, this implies that
®Z%/2X (n)g is the Thom spectrum of the map

(2°SU(n)r)%/? ~ Q(SU(n)/SO(n)) — Q(SU/SO) ~ BO ~ BUZ*.

Since ®Z/2T'(n)r ~ y(n) as 2-local Ei-algebras, Conjecture a) would imply
that ®%/2X(2")r (i.e., the Thom spectrum of the map Q(SU(n)/SO(n)) — BO)
is a direct sum of shifts of y(n) such that the inclusion y(n) — ®%/2X (2")g of the
unit summand is an E;-map. This is indeed true, and was proved in [Yan92|.

Example 3.3.21. The strongest evidence for Conjecture d) is the follow-
ing. It follows from [Dev23a, Construction 7.1.1] that there is a map Q8™ ~! —
BGL;(X(n — 1)r) whose Thom spectrum is X (n)gr. The same construction used
to prove Theoremthen shows that for any Z/2-equivariant E,-X (n)gr-algebra
R, there is an equivariant cofiber sequence

(38) THHg(R/X(n— 1)) — THHR(R/X (n)r) — S""THHg (R/X (n)r),

where the second map is a Z/2-equivariant analogue of the topological Sen op-
erator. It is not difficult to see that given the first half of Conjecture a),
Conjecture [3.3.16/(d) can be easily proved using the construction of Theorem
For example, we have X (2)g = T(1)m, and the cofiber sequence of (38 is
precisely Conjecture d). For R =127, becomes a cofiber sequence

Z[QS* ™ p+1)] ~ THHR(Z) — THHR(Z/X (2)r) ~ Z[QS?* 1] ~ @ n2rg @ »2mrg,

n>0 m>1

A version of this fiber sequence was in fact already studied in [HHK'20, Lemma
A3].

Remark 3.3.22. Conjecture [3.3.16|a) and Conjecture [3.3.16[(d) together imply
that

. ®%2THHR (BP(n — 1)Rr) =~ Falt,0%(v,_1),0(v;_1)|1 < j < n]/(o(v;)?),

17See also [Dev23al Theorem 7.2.1], which says that Z is the Thom spectrum of a map
QPS2r+1 5 BGL1 (X (2)r) whose bottom cell detects v; € 7, X (2)R.
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where [t| = 2" = |0%(v,—1)| and |o(vj—1)| = 27 — 1. This can also be proved
unconditionally using methods similar to that of [DMPR17, Theorem 5.23|, by
writing

OZ/2THHR (BP(n — 1)r) ~ ®%/?BP(n — 1)r @p(n_1)n ®2/*BP(n — )R,

and using that 7,®%/2BP(n — 1)g = Fy[t].

Note that if we assume Conjecture [3.3.16{c), then THHg (BP(n — 1)r/T'(n —
Dr) ~ BP(n — 1)r[K,]; the conjectural equivalence KZ?* = K,_; then gives an
equivalence

(39)  ®Z/2THHR(BP(n —1)r/T(n — 1)r) ~ ®%/?BP(n — 1)r[Kn_1].
Observe that
T, ®Z/2BP(n — 1)r[K,_1] = Falt, z, €] /e?,

where |z| = 2™ and |y| = 2™ — 1. For instance, when n = 1, there is an equivalence
(QSPH(p+1))%/2 = Q52 and (39) reduces to the equivalence

®Z/>THHR(Z) =~ ®Z/*Z[05?] = (150F5 )[Q257].

3.4. Aside: the Segal conjecture. In this section, we make some brief
remarks regarding the Segal conjecture; the reader is referred to [HW20], Section
4] and [Mat21], Section 5] for a discussion of its algebraic interpretation and a
review of the literature on this topic.

Definition 3.4.1. An E..-ring R is said to satisfy the Segal conjecture if the
cyclotomic Frobenius THH(R) — THH(R)*4/? is an equivalence in large degrees.

Example 3.4.2. Let R be a commutative Fp-algebra. If R is Cartier smooth in
the sense of [KM21l, Section 2] and Q% g, = 0forn >0, then R satisfies the Segal
conjecture in the sense of Definition (see [Mat22l Corollary 9.5]).

For instance, suppose R = k is a field of characteristic p > 0. Then THH(k) ~
HH(k/F,)[o] as a module over THH(F,) ~ F,[o], and m;HH(k/F,) = 0 for i >
log, [k : kP] = dimy Q}ﬁ/FP. This implies that the localization map THH(k) —
THH(k)[L] ~, THH(k)'%/? is an equivalence in degrees > log, [k : kP] — 2.

Example 3.4.3. The proof of [HW20, Theorem 4.3.1 and Corollary 4.2.3] can be
used to show that the map THH(BP(n — 1))®gp(n—1)Fp — THH(BP(n — 1>)tz/”®Bp<n,1>

F, is an equivalence in degrees > n + >0 "v;| = S0 (2pf — 1) = 22 =L

1 M
Note that 2pp__11 —n is also precisely the shift appearing in Mahowald-Rezk duality

for BP(n) (see [MR99, Corollary 9.3]).

Remark 3.4.4. Assume Conjecture [2.1.9] so that we can define the THH of a left
T'(n)-linear co-category relative to T'(n). Since we do not know if THH relative to
T(n) admits the structure of a cyclotomic spectrum (presumably it does not), it
does not seem possible to state a direct analogue of Definition [3.4.1] in this con-
text. However, recall that if k is a perfect field of characteristic p > 0 and R is
an animated k-algebra, the cyclotomic Frobenius ¢ : THH(R) — THH(R)'2/? is
the Frobenius-linear map given by inverting o € mo THH(k): this is a consequence
of the observation that the map ¢ : THH(k) — THH(k)*%/P is given by compos-
ing the localization THH(k) — THH(k)[o~!] with a Frobenius-linear equivalence
THH(k)[o ] ~prop, THH(K)PZ/P,
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This observation motivates the following terminology: we say that an Eq-
BP(n — 1)-algebra R satisfies the “T'(n)-Segal conjecture” if the base-change of the
localization map THH(R/T(n)) — THH(R/T(n))[f,'] along BP(n — 1) — F, =
BP(n—1)/(p, - ,vn—1) is an equivalence in large degrees. Note that if n = 1,
this is equivalent to saying that the p-completion of the map THH(R/T(1)) —
THH(R/T(1))[0~!] is an equivalence in large degrees. One can similarly say that an
E1-Z,-algebra R satisfies the “.J(p)-Segal conjecture” if the map THH(R/J(p)) —

THH(R/J(p))[z~!] is an equivalence in large degrees.

Proposition 3.4.5. If we assume Conjecture[2.1.9, the localization map
J THH(BP (0 — D, 2]/ T(n)) — THHBP(n — fas, - 4] /T(n))(6; "

is an equivalence in degrees > d — 2p™ after base-changing along BP(n — 1) — F,,.
In particular, the flat polynomial algebra BP(n — 1)[x1,--- ,x4] satisfies the T(n)-
Segal conjecture.

PrOOF. Write T' := THH(BP(n — 1)/T'(n)) for notational simplicity. Using
(32), we have

THH(BP(n — 1)[t]/T(n))[0~] = T10~] & P T07] @ (5" /11a)+-

n>1

Since the map T — T[0~!] is an equivalence in degrees > —2p™ after base-changing
along BP(n — 1) — F,, the map T ® (S*/pn)+ — T[071] @ (S*/pn)+ is an equiv-
alence in degrees > —2p™ + 1 after base-changing along BP(n — 1) — F,. Because
the map v : THH(BP(n — 1)[t]/T(n)) — THH(BP(n — 1)[t]/T(n))[#~!] preserves
the summands, we see that v is an equivalence in degrees > —2p™ + 1 after base-
changing along BP(n — 1) — F,. Inducting on the number of variables, we find
that the map ~ is an equivalence in degrees > d — 2p™ after base-changing along
BP(n — 1) — F,, as desired. O

Remark 3.4.6. When d = 0, Proposition should be compared to [HW20,
Theorem 4.3.1]. In fact, we expect it is possible to recover their result using Propo-
sition We also note the following variant. Let R := BP(n — 1)[t1,- - ,t4]
denote the flat polynomial E5-BP(n — 1)-algebra on classes t; in even degrees
(i.e., the base-change of the E,-MU-algebra MUJty,- - ,t4] along the Es-map
MU — BP(n —1)). The argument of Proposition then shows that after
base-change along the composite R — BP(n —1) — F,, the localization map
v : THH(R/T(n)) — THH(R/T(n))[¢,,!] is an equivalence in degrees > —2p™ +

Z?Zl(|tj| +1). When n = 0, this is [HW20|, Corollary 4.2.3].

Proposition 3.4.7. Let R be a p-torsionfree discrete commutative ring such that
R/p is reqular Noetherian. Suppose L% = 0 for n > d. Then Conjecture
implies that R satisfies the J(p)-Segal conjecture: in fact, the map THH(R/J(p)) —
THH(R/J(p))[z1] is an equivalence in degrees > d — 2.

PRrROOF. Recall that Conjecture [3.1.13| asserts that THH(R/J(p)) has a fil-
tration such that gri THH(R/J(p)) ~ (cm-onjﬁg)[%}, and such that the map
v : THH(R/J(p)) — THH(R/J(p))[z~!] induces the map Fgonjﬁg — (Alg on
gri o«[—2i]. By |BL22a, Remark 4.7.4], ﬁg/Ffonjﬁg is concentrated in cohomo-
logical degrees > i + 1, so that the cofiber of gr(y) is concentrated in degrees
<2i—(i+1) =i— 1. Moreover, the hypothesis that LQ% = 0 for n > d implies
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that ~ induces an equivalence on gr? . for i > d. Combining these observations

gives the desired statement (see also the proof of [Mat22] Corollary 9.5]). O

3.5. Aside: Cartier isomorphism. In this section, we study a topolog-
ical analogue of the Cartier isomorphism for the two-term complexes from Re-
mark we will study basic algebraic properties of these complexes in future
work. To avoid dealing with completion issues, we use the following (see Warn-
ing for a remark about the notation HH(R[t]/R)):

Definition 3.5.1. Let R be an Es-ring. The polynomial E;-R-algebra R[t] = R[N]
acquires a natural Z-grading, and we will write HH(R[t]/R)<,, to denote the graded
left R-module given by truncating HH(R][t]/R) := RQTHH(S]t]) in weights > m+1.

Explicitly, HH(R][t]/R) <, is equivalent to R @ (@1§n§m R® (Sl/un)+).

Lemma 3.5.2. If X € SpBSl, the following composite is an equivalence:
X2/ g (SY 1)1 5 (X @ (51/u71)+)tz/p N (X ® (51/an)+)tZ/p.
Moreover, if ptm, then (X ® (S*/um)1)t%/P = 0.

PROOF. If ¢ : (S /pn)+ — ((S*/pinp)+)"%/P denotes the unstable Frobenius
(sending x — J:l/”), the cofiber of the composite

(S )+ = (S hap)+)" 2P = (S np)+
has induced Z/p-action, where (S/p,)+ and ((S/finp)+)"%/P are equipped with
the trivial Z/p-action. Therefore, the canonical map X*2/? @ (S/j,)1 — (X ®
(S'/un)+)%/? is an equivalence (since (S'/pu,)y is a finite spectrum with trivial
Z/p-action). This gives the first claim. Finally, if p { m, then the Z/p-action on
S/ i is free, so that (X @ (S/ )4 )t2/P = 0, as desired. O

Proposition 3.5.3 (Cartier isomorphism). Let R be an Eq-ring. Then:
(a) There is an S*-equivariant map € : HH(R'2/P[t]/ RY%/P) — HH(R][t]/R)*?/?,

where HH(R[t]/ R)*2/? is endowed with the residual S* / i,-action and HH(R'2/P[t]/ RY2/P)

is endowed with the diagonal S'-action arising from the S*-action on HH
and the residual S*/u,-action on R'Y2/?_ Moreover, the map € sends
t—tP.

(b) For eachm > 1, the map € induces an equivalence €<, : HH(R'2/P[t]/RY%/P) <,

(FH(RIt)/ R) <mp) ?'" .

PROOF. Recall that there is an equivalence HH(R[t]/R) ~ R ® THH(S[t]).
Since the Z/p-Tate construction is lax symmetric monoidal, we obtain the map €
via the composite

HH(R'2/?[t]/R"%/?) ~ R'2/P @ THH(S[t])
199, RY%/v @ THH(S[t])!?/”
— (R @ THH(S[t]))"2/? ~ HH(R[t]/R)"%/P.

For each m > 1, there is an equivalence
tZ/p

(HH(R[t]/R) <) " = RZP @ | (D) R (5" /mn)+

1<n<m
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Since the maps ¢ : (S*/pn)s+ — ((S*/pinp)+)"?/? define the Frobenius on THH(S[t]) ~
S® @, (S pn)+, we see from Lemma that for each m > 1, the map €<,
defines an equivalence

tZ/p

D RS ) = | D RS s

1<j<m 1<n<mp

The left-hand side is HH(R'2/?[t]/ R'%/P) <., and the right-hand side is (HH(R[t]/R) <mp) /"
O

Remark 3.5.4. When R is an E.-ring, the map ¢ : HH(R'Z/?[t]/R'%/P) —
HH(R][t]/R)*%/? of Proposition can also be constructed using (a simple case
of) |[Law21, Theorem 1.3]. The cited result says the following. Suppose k is
an Eo-ring, so that the Tate-valued Frobenius k& — k'%/P admits an extension
THH(k) — k'%/P to an S'-equivariant map of E.,-rings. If A is an E;-k-algebra,
and M is an A-bimodule in Mody, then there is a relative Tate diagonal

k'2/P @iy THH(A, M) — THHF (A, M®4P)2/p,

where THH* denotes THH relative to k. To construct €, take k = R and A = M =
k[t]. Then

k2P @rupy THH(A, M) ~ k'2/P @ THH(S [t]) ~ HH(K'2/?[t] /K*2/P),

since THH(A, M) ~ THH(A) ~ THH(S[#])@ THH(k). Similarly, THH" (A, M®4P) ~
HH(A/k), and it is straightforward to check that Lawson’s relative Tate diagonal
agrees with the map €.

One advantage of the construction of € in Proposition [3.5.3]is that it is man-
ifestly S'-equivariant, and does not rely on R being an E,.-ring. More generally,
one finds that if C is a stable co-category and R is any Es-ring, the cyclotomic
Frobenius on THH(C) defines an S*-equivariant map ¢ : HH(C @ R*4/?/R!Z/P) —
HH(C ® R/R)*%/P which generalizes the map of Proposition This map is
furthermore an equivalence if € is smooth and proper.

Remark 3.5.5. In Proposition|3.5.3, the map ¢ : HH(R'2/?[t]/ R'%/?) — HH(R]t]/R)*%/?
is itself almost an equivalence: the main issue is that the canonical map

colim,, (HH(R[t]/R)<mp) /" — (colim,, HH(R[t]/R) <mp)'*/? ~ HH(R]t]/R)"?/?

may not be an equivalence. However, Proposition implies that the graded map

¢s' : HH(R[t]/R)*%/P — HH(R][t]/R)"?/P is itself an equivalence.

Remark 3.5.6. If R is a complex-oriented Ey-ring, let [p](f) € 7_oR"S" denote the

p-series of the formal group law over R. If M € LModgsl, then it is not difficult to
show that there is an equivalence M*S' / @ = MY2/P. (Although certainly well-
known, the only reference in the literature for a statement in this generality seems to
be [HRW22, Lemma 6.2.2].) In particular, HH(R[t]/R)'%/? ~ HP(R[t]/R) /"),
so that Proposition and Remark imply that there is an S'-equivariant
graded equivalence

¢ : HH(R'/?[1]/R'?/?) — HP(R[t]/R)/ 2" ~ HH(R[t]/R)"Z/>.

In future work, we will show that if R is further assumed to be an E,-ring and € is
a R-linear co-category, then the (R'2/P)hS" ~ (Rtsl);}—module (THH(C) ®7Hu(r)
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R2/7)h5" behaves as a noncommutative analogue of Ly ny/n applied to HP(C/R).

Here, h € m_oR"S" is the complex-orientation of R, and [p|(h)/h € moR!S" is the
quotient of the p-series of the associated formal group law.

Remark 3.5.7. There is no reason to restrict to polynomial rings in a single vari-
able in the equivalence of Proposition [3.5.3(b); we leave the details of the resulting
statement to the reader.

Example 3.5.8. Let R = Z. Then Z'2/? is an E.-Z- algebra and has homotopy
groups given by F,((h)) with |h| = 2. Therefore Z!Z/p ~ FtS as E- rlng and
Proposition m (combmed with Remark [3.5.5) specializes to the statement that
there is a Frobenius-linear equivalence

€ : HH(F,[t]/F,) (R) <m =~ HH(FLS [t /FES) <y &5 (HH(Z[t]/Z) <1p) 27

Note that HH(Z[t]/Z)"%/P ~ HP( [t]/Z)/p ~ TP(F,[t])/p. Since the HKR theo-

rem implies that HH(F),[¢] /Fp)ts is a 2-periodification of the Hodge cohomology
of A%?p, and HP(Z[t]/Z)/p is a 2-periodification of the de Rham cohomology of
Alzp modulo p (which is the de Rham cohomology of A%p), one can view € as a
topological analogue of the Cartier isomorphism for the affine line. It reduces to
the usual Cartier isomorphism on graded pieces. In this case, the statement of
Proposition should also be compared to [Kal08), [Kall17, Mat20]. Taking
homotopy fixed points for the S'-equivariance of ¢ from Proposition m(a), we
obtain a Frobenius-linear equivalence

1 1 ~ 1
(40) ¢S (HH(Z/P[t]/Z2/7)"57) <oy =5 (HH(Z[t]/Z) <np)™™ )y
More succinctly, there is a graded equivalence
(€s)hS" HH(Z'2/P[t)/Z"2/P)S" = HPe (Z[t]/Z)).

Using the HKR filtration on HH(Z[t]/Z), one can prove that HH(Z!Z/[t] /Z!Z/p)hS’
admits a filtration whose graded pieces are given by even shifts of Ln,Iqr(Z,[t]/Z,)
LnpTerys(Fplt]/Zy,). We will explain this in greater detail in a future article. Since
HP(Z,[t]/Z,) ~ TP(F,), can be regarded as a 2-periodification of the “Cartier
isomorphism” Ln,Lerys(Fplt]/Zp) =~ Terys(Fp(t]/Zy) for the crystalline cohomology
of F,[t] (see [BOT78| Theorem 8.20] for the general case).

Example 3.5.9. Let R = ku. Then m,ku'%/? =~ Z[(,)(h), and it is expected that
this lifts to an equivalence kut%/? ~ Z[C]D]ts1 of E-rings (see also Example [3.5.11
below). Nevertheless, there is an equivalence ku'?/? ~ Z[¢,) " of Ey-rings (one can

181y fact, they are equivalent as Ec-rings. Although seemingly innocuous, even the weaker
claim that Z!Z/P admits the structure of an Eoo-Fp-algebra is surprisingly difficult to prove
from first principles (see [NS18, Remark IV.4.17]). One might try to argue as follows: since
p =0 € mZ!2/P there is a map from the free Eqo-algebra with p = 0 to Z!%/P. However,
oddly enough, the free Eoo-algebra with p = 0 is not an Eoo-Fp-algebra; this dashes any hopes
of proving that Z!Z/P is an Eo-Fp-algebra through this argument.

More generally, the free Ey-algebra R with p = 0 is not an E,-Fp-algebra unless n = 2:
indeed, applymg the E,-cotangent complex to the composite F, =+ R — F, of Ej,-algebra maps
shows that LE Fy is a retract of F), @p L " ~ F,. This forces L " = Fp, ie., Fp would be
built from the sphere by attaching a smgle E,- cell in degree 1 — but this is 1mposs1b1e since
Fp ® Fp 22 F,[Q7S" 1] unless n = 2.

12
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show this by using [Mao20, Theorem 1.19]; thanks to Arpon Raksit for pointing
this out). Therefore, Proposition and Remark give an equivalence

€ - HH(Z[G)[t]/Z[C]) () < = HE(Z[G)™S 1]/ Z[Go)" ) <m =5 (HH(kult]/ku) <,np) 277,

Note that HH(ku[t]/ku)?2/? ~ HP(ku[t]/ku)/[p],. Here, we identify w €

7r0kutS1 & Z[q — 1] with the g-integer [p],-

By the HKR theorem, one can view HH(Z[(,|[t]/Z[(,]) (7)) as a 2-periodification
of the Hodge cohomology of A}, base-changed along the map Z — Z[(,]. Similarly,
the aforementioned work of Raksit (see |[Rak20] and Remark as well as
Lemma [3.3.4)) implies that HP (ku[t]/ku) can be viewed as a 2-periodification of the
g-de Rham complex of Z[t]. Since killing [p], € Z[q — 1] amounts to specializing
q to a primitive pth root of unity, one can view Proposition as a topological
analogue of the Cartier isomorphism for the g-de Rham complex of the affine line
(see, e.g., [Sch17, Proposition 3.4]).

Taking homotopy fixed points for the S'-equivariance of € from Proposition a),
we obtain an equivalence

(41) @ (HHka/7[t] /7)) < S5 (HH (kult] k) <inp)*S)p-
More succinctly, there is a graded equivalence
(€&)hS"  HH (ku'2/7[t] /ku'2/7)S" 2 HP# (kult] /ku)).

In future work, we show that Raksit’s filtration on HP(ku[t]/ku) can be refined
to construct a filtration on HH(ku'Z/P[t] /kut?/?)hS" whose graded pieces are given
by even shifts of Ln, ¢z, 1. Then, can be regarded as a 2-periodification
of the “Cartier isomorphism” ¢*zp[[q_1]]qQZp[t] ~ Lny),q€z, (g for the g-de Rham
cohomology of Z,[t]. (See [BS19, Theorem 1.16(4)] applied to the g-crystalline
prism (Zp[g — 1], [ply)-)

Remark 3.5.10. Example admits a mild generalization. Namely, if kuZ/?"
denotes the strict fixed points (so ku?/?"" = 750(ku"%/?" ")), then one can cal-
culate ﬂ*(kuz/pnfl)tz/i’ ~ 7,Z,[C,n]"S". One can show that this can be extended

to an equivalence (ku?/ Pnfl)tz/p ~Z, [Cpn]ts1 of Ea-rings. Proposition and
Remark [3:5.5] give a graded equivalence

€ - HH(Z (G ][1]/Z[Cpn]) (B) =5 HE(ku®/?" " [t] /ku®/7" " )12/7,

Here, the action of Z/p on HH(kuZ/p"il[t]/kuz/p"il) = THH(S[t]) ® kuZ/7" " s
via the diagonal action on THH and kuZ/?""". In this case, one can therefore
view Proposition [3.5.3] as a topological analogue of the Cartier isomorphism for
Hodge-Tate cohomology relative to the prism (Z,[q"/ - 1], [plq) of the affine

line.

Example 3.5.11. More generally, let R = BP(n). As recalled in Remark
[AMS98|, Proposition 2.3] proved that there is an isomorphism 7,BP(n)!%/P =
m,BP(n — 1)t and this was conjectured to lift to an equivalence of spectra in
IDJK*™86, Conjecture 1.2]. If we assume that there is in fact an equivalence
BP(n)!2/P ~ BP(n —1)*S" of E,-rings, Proposition and Remark [3.5.5| give

an equivalence

¢ : HH(BP(n — 1)[t]/BP(n — 1)) (7)) <m = (HH(BP(n)[t]/BP (n)) <imp)*/”.
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Therefore, Proposition [3.5.3]in this case can be viewed as an analogue of the Cartier
isomorphism for the affine line in the setting of “v,-adic Hodge theory”. Taking
homotopy fixed points for the S!-equivariance of € from Proposition [3.5.3(a), we
obtain an equivalence

(42)

ST (HH(BP(n) 2/P[t] /BP(n) 2/2)S") ., & (HE(BP (n)[t]/BP (1)) <np)™S ).

More succinctly, there is a graded equivalence
(€2)"S" . HH(BP (n)'?/?[t] /BP (n)'%/)"S" =5 HP#'(BP(n)][t]/BP(n))).

Note that Conjecturein particular implies that if T'(n) admits the structure of
an Ef-ring, then HP(BP(n)[t]/BP(n)) is closely related to TP(BP(n — 1)[t]/T(n))
by Proposition In this form, holds when BP(n) is replaced by any
complex-oriented Es-ring R. As in the preceding examples, we believe that when R
is connective, this can be regarded as a 2-periodification of a “Cartier isomorphism”
for the two-term complex (B5). See [DM23] for further discussion.
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4. Relationship to the moduli stack of formal groups

4.1. Incarnation of the topological Sen operator over Mpgg. In Sec-
tion [3] we showed that the descent spectral sequence of Remark admits a
generalization given by the topological Sen operator (Theorem [3.1.4). This has an
incarnation over Mpq, as we now explain. The analogues of Theorem The-
orem [3.1.4] etc., that we discuss in this section are useful for making topological
predictions since the calculations involved are easier.

Recollection 4.1.1 (Even filtration). Let F%, : CAlg — CAlg(Sp™) be the even
filtration of [HRW22|: if CAlg®” denotes the full subcategory of CAlg spanned
by the Eo-rings with even homotopy, then FZ, is the right Kan extension of the
functor 7o, : CAlg® — CAlg(Sp™) along the inclusion CAlg®™ < CAlg. Note
that since 7>9, is lax symmetric monoidal and F}, is defined by a right Kan ex-
tension, it is also a lax symmetric monoidal functor. We will need the following
result from [HRW22|: if R is an E.-ring such that MU ® R € CAlg®, then
F%, R is p-completely equivalent to the underlying filtered E-ring of its Adams-
Novikov tower v(R) € Synyy(Sp) = ModTot(BZ*MU@.H)(Spﬁl). (Also see [Pst18,
GIKR18].) In this case, the associated graded Hopf algebroid (MU, (R), MU, (MU®
R)) defines a stack over BG,,,. If R is complex-oriented, then this stack is isomor-
phic to Spec(m, R)/Gy,, where the G,,-action encodes the grading on 7, R.

Observation 4.1.2. In order to define the stack M r associated to the graded Hopf
algebroid (MU, (R), MU,(MU® R)), one does not need R to be an E,-ring: it only
needs to admit the structure of a homotopy commutative ring such that MU, (R)
is concentrated in even degrees. This perspective is explained in Hopkins’ lecture
in [DFHH14, Chapter 9]. In particular, one can define the stack associated to
X (n): this is the moduli stack of graded formal groups equipped with a coordinate
of order < n, and strict isomorphisms between them. (See, e.g., [Mil19l Section
2].)

Variant 4.1.3. We will find it convenient to work with the p-typical variant of
the graded Hopf algebroid (MU, (R),MU,(MU ® R)). Namely, if R is a p-local
homotopy commutative ring such that BP,(R) is concentrated in even degrees,
then we will write My to denote the graded stack associated to the graded Hopf
algebroid (BP.(R),BP.(BP ® R)). For example, My, is the moduli stack of p-
typical graded formal groups equipped with a coordinate up to order < p»*! —1;
by p-typicality, this is further isomorphic to the moduli stack of p-typical graded
formal groups equipped with a coordinate up to order < p™. In particular, Mgo is
isomorphic to the moduli stack Mg of p-typical graded formal groups. Similarly, if

R is a p-local complex-oriented homotopy commutative ring, then Mg is isomorphic
to Spec(m.R)/ G-

Example 4.1.4. The unit map S° — MU induces the map Myy = Spec(MU.,.)/G,, —
J\N/ESO which describes the flat cover of the moduli stack of graded formal groups
given by the graded Lazard ring. This map exhibits Mgo as the quotient of
Spec(MU,)/G,, by the group scheme Spec(m,(MU ® MU))/G,,,. Note that MU ®
MU ~ MU[BUJ; since 7, Z[BU] is the coordinate ring of the big Witt ring scheme,

we see that Spec(m,(MU ® MU))/G,, is a lift of the big Witt ring scheme to
Spec(MU,)/G,,. Similarly, Mgo = Mg is the quotient of Mpp = Spec(BP,.)/G,

by a lift of the p-typical Witt ring scheme W to Spec(BP.)/Gy,.



THH, BP(n), AND A TOPOLOGICAL SEN OPERATOR 65

Remark 4.1.5. If A — B is a map of p-local E,-rings such that the map
B®astl MU @ B®4*t! is an eff cover and MU ® B®4*tl ig levelwise even,
then there is an induced map Mg — M 4 of graded stacks and there is an isomor-
phism Mpe 4e+1 & M;MA.H. Recall that THH(B/A) is the geometric realization
of the simplicial A-algebra B®4**1. Suppose that the natural map

colimaor FX (B®4*) = F* colimaor B®4*T = F* THH(B/A)

is an equivalence. Then applying F%, levelwise to B®4**t! ¢ Fun(A°P, CAlg,)
produces an Adams-Novikov analogue of the Bokstedt spectral sequence:

7 HH(Mp/My) = mgrs, THH(B/A).

In particular, note that HH(Mp/Mpq) is an approximation to gre, THH(B). For
this spectral sequence to exist, it is not necessary that A and B be E.,-rings: for
example, it suffices that A — B be a map of p-local Es-rings such that MU, (A)
and MU, (B) are even, and such that THH(B/A) is bounded below and has even
MU-homology. Then, grs, THH(B/A) must be interpreted as the associated graded
of the Adams-Novikov filtration on THH(B/A); see [HRW22| Corollary 1.1.6].

Example 4.1.6. The complex orientation BP — BP(n) induces a map Mgp,,) —
Mpp which factors the structure map Mpp(,y — Mrpa. Explicitly, we have the
following composite map of stacks over BG,,:

Spec(BP(n).)/Gym — Spec(BP.) /G, — Mpg.

Taking cotangent complexes gives the following transitivity cofiber sequence in
Modgp, ()

BP(n). ®Bp, Lspec(BP.)/Mra — LBP(n). /Mra — LBP(n)./BP, -

Since BP./(Vn41,Vnt2,---) = BP(n)., observe that Lpp ). /sp, is a free BP(n).-
module generated by classes 0(vy11),0(Vnt2), . Similarly, the discussion in Ex-
ample implies that Lgpec(p,)/Mpq 15 @ free BP,-module generated by classes
d(t;). From this, one can deduce that Lgpec(BP(n).)/G,n/Mpc 15 @& free BP(n),-
module generated by classes o(v;) with j > n+1 and d(¢;) with ¢ > 1. By the HKR
theorem, m, HH(Spec(BP(n).)/G,/Mrg) is isomorphic to Symgp .y, (LBP(n). /M [1]);
which can be identified as

W*HH(SpeC(BP<n>*)/Gm/MFG) = BP<7L>*<02’U]‘ |] Z n + 1>®BP(7;)*ABP(n)*(dti|i 2 1)

Since v; lives in degree 2p7 — 2 and weight p’ — 1, the class o?v; lives in degree
2p7 = |v;| + 2 and weight p’; similarly, since ¢; lives in degree 2p’ — 2 and weight
p’ — 1, the class dt; lives in degree 2p* — 1 and weight p’.

Example 4.1.7. The same discussion for the following composite map of stacks
over BG,,
Spec(BP(n — 1).)/Gy — Spec(BP.) /Gy — My

shows that Lspec(BP(n—1).)/G,n/Mrp(,, 1S @ free BP(n — 1),-module generated by
classes o(v;) with j > n and d(¢;) with ¢ > n + 1. Therefore, the HKR theorem
implies that 7,HH(Spec(BP(n —1).)/Gmn/Mr(,)) is isomorphic to a symmetric
algebra over BP(n — 1), on classes o%(v;) for i > n, and d(t;) for i > n + 1.
Explicitly,

T, HH(Spec(BP(n — 1)) /G /Myp(n)) = BP(n — 1)..(0v;]j > n)®pp(n—1y. App(n—1y. (dt;:]i > n+1).
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The class o%v; lives in degree 2p/ = |v;| + 2 and weight p?, and the class dt; lives
in degree 2p’ — 1 and weight p’. This mirrors the calculation of the E?-term of the
Bokstedt spectral sequence in Proposition [2.2.15]

In fact, one can recover Theorem [2.2.4] in this way by running the Adams-
Novikov-Bokstedt spectral sequence (Remark and using the Eo-Dyer-Lashof
argument of Proposition to resolve the extension problems on the E°°-page.
We use the term “recover” in a very weak sense here: the differentials in the Adams-
Novikov-Bokstedt spectral sequence are forced by the differentials in the usual Bok-
stedt spectral sequence (Proposition [2.2.15)). Explicitly, we have

ar=t ('yj (02vm>) = ’7j7p(0-2vm)dtm
modulo decomposables, and the spectral sequence collapses on the E,-page. There

are topologically determined extensions (02v,, )P = 0%v,,, 1 modulo decomposables,
which give an isomorphism (as implied by Theorem [2.2.4))

m.gre, THH(BP(n — 1)/T(n)) = BP(n — 1).[o?(v,)].

Recollection 4.1.8. Let Y be a scheme, and let ¢ : X — A! x Y be a morphism,
so that X is a scheme over Y via the projection pr : A! x Y — Y. Then the
transitivity cofiber sequence in QCoh(X) runs

¢ Laixy;y = Lx;y = Lx/atxy-

Since ¢*La1xy/y is a free Ox-module of rank 1 generated by dt (where ¢ is a
coordinate on A'), we obtain a cofiber sequence

* * v *
de/y — dRX/A1><Y — de/Alxydt7

where dRY /)y = @,;5(A'Lx,y)[—i] denotes the underlying derived commuta-
tive algebra of the downwards-shearing of Symg  (Lx/y[1](1)). The map V is
the Gauss-Manin connection for the morphism g. Note that V satisfies Griffiths
transversality: it sends the nth piece of the Hodge filtration to the (n — 1)st piece.

Remark 4.1.9. Observe that if ¢ is taken to be the morphism ¥ — A' x Y given
by the inclusion of the origin into A!, then dRy/a1xy is p-completely isomorphic
to the divided power algebra Oy (t). Using the fact that dRy,y = Oy, it is not
difficult to see that the Gauss-Manin connection V must send v;(t) — ~;—1(t)dt.
Here, we set y_1(t) = 0. In particular, V is a PD-derivation.

Example 4.1.10 (The topological Sen operator and Mpg). The map T'(n — 1) —
T'(n) of homotopy commutative rings induces a map My (,) — Myp(,—1) of graded
stacks, which sends a p-typical graded formal group equipped with a coordinate
up to order < p™ to the underlying p-typical graded formal group equipped with a
coordinate up to order < p" — 1. The map Mp(,) — Mr(,—1) is an affine bundle:
in other words, it exhibits Mz, _1) as the quotient of Mp,) by the group scheme
GE{’"‘”/Gm over BG,,, where G~ denotes the affine line with G,,-action of
weight p™ — 1. This follows, for instance, from [Pet17, Reduction of Lemma 3.2.3
to Lemma 3.2.7]. If f : X — My, is a stack over My(,,), the transitivity cofiber
sequence in QCoh(X) is given by

*
f LMT(H)/MT(H—I) - LX/MT(n—l) - LX/MT(H) :

Since Mgy — Mrp(,—1) is a Gg-bundle, we see that LMT(n)/MT(n—l) is a free
Onyp(ny-module of rank 1 generated by the class dt;. It follows that there is a
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cofiber sequence
(43)  HH(X/Mrp(y-1)) = HH(X/ Mz () 222 S2" 0" HE(X/Mr()

of quasicoherent sheaves on X, where ™" denotes a shift by degree n and weight
w. As indicated by the notation, the map ©,,,; behaves as an analogue on Mpg of
the topological Sen operator of Theorem more precisely, it is the effect of the
topological Sen operator at the level of the E?-page of the Adams-Novikov-Bokstedt
spectral sequence of Remark [{.1.5] Moreover, the discussion in Recollection [£.1.§]
says that O,0; can be understood as an analogue of the Gauss-Manin connection.

Example 4.1.11. The topological Sen operator on THH(Z,/J(p)) = Z,[x] sends
27+ ja? 71, so that the action of the Sen operator is precisely the action of G¥
on G, = Spec Zy[z] given by 0, : Zy[x] — Zy[x]. Therefore, there is a p-complete
graded isomorphism gre, THH(Z,) = T'(G,/G¥;0). In the same way, one can argue
that there is a p-complete isomorphism grs, THH(Z,)"%/? =~ T(G,,/G%,; 0).

This perspective is related to the stacky approach to Hodge-Tate cohomology
a la [Dri22|, BL22a| in the following way. By [Dri22, Proposition 3.5.1], there is
an isomorphism G,/G# = GIR; similarly, G,,,/G#, = GIR. Therefore:

(44) gre, THH(Z,) = T(Gg%; 0),
(45) gr® THH(Z,)'%/? = 1(GIR; ).

Since grgvTHH(Zp)tz/ P is supposed to arise as the cohomology of the total space
Tot(Owearenr {1}) of the Breuil-Kisin twisting line bundle Oyygapenr {1} over WCart™™h,
the isomorphism (45| suggests that Tot(Owcarenr{1}) = G, In turn, this sug-
gests that WCart" " should be GIR/G,,, = BG¥ . This is indeed true: it is precisely
|IBL22al, Theorem 3.4.13].

Similarly, gre, THH(Z,) is supposed to arise as the cohomology of the total
space of the Breuil-Kisin twisting line bundle over the “extended Hodge-Tate locus”
Af in Drinfeld’s ¥’'. (The stack A( is defined in [Dri22 Section 5.10.1].) In
[Bha22], the stack %' is denoted by Spf(Z,)", and one might therefore denote
Af by Spf(Zp)N’HT. The isomorphism (44)) then suggests that the total space of
the Breuil-Kisin line bundle over Spf(Z,)™"!T is G which in turn suggests that
Spf(Z,)™HT should be GI®/G,, = G,/(G¥ x G,,). This is indeed true: it is
precisely [Dri22| Lemma 5.12.4].

Had we worked with the evenly faithfully flat cover grs, THH(Z,) — gre, THH(Z,/S|t])
(where t — p) instead, the stack associated to the even filtration on THH(Z,) would
in fact be presented by (and is therefore isomorphic to) GI®/G,,.

Variant 4.1.12. One can also study the stack M,y associated to the Efl-ring
J(p). It is not difficult to show that the morphism M ;(,) — Mpg exhibits M) as
a G,,-bundle over Myg; for example, the fiber product Spec(MU..) /G X avtpe Mo (p)
is isomorphic to Spec(m, (MU ® J(p)))/ G, but there is an equivalence of Eo-MU-
algebras MU ® J(p) ~ MU[t*!] with || = 0.

Since My, is a Gy,-bundle over Mgg, descent in Hochschild homology is
controlled by a Gauss-Manin connection. If Y is a scheme and ¢ : X — G,,, X Y is
a morphism, then there is a cofiber sequence

* * v *
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If X is a stack over M(,), we then obtain a cofiber sequence

HH(X/Mpa) = HH(X/M () =22 S2THH(X /M ()

of quasicoherent sheaves on X. This is an analogue on Mpg of the topological Sen

operator of .

Remark 4.1.13. Suppose that T(1) admits the structure of an Ef-ring (this is
true at p = 2). The unit map on T'(1) defines a map TP(Z,) — TP(Z,/T(1)).
Since TP(Z,/T(1)) is concentrated in even degrees by Theorem one can
define the motivic filtration on TP(Z,/T(1)) using the double-speed Postnikov
filtration. Under the isomorphism 7, TP(Z,/T(1)) = @, BP(1)!S" =~ Z [5]*S", one
can view gr' of the motivic filtration TP(Z,/T(1)) as Z,[p]. Recall that TP(Z,)
is a homotopical analogue of the Cartier-Witt stack WCartz, from [BL22b|. One
can then view the map TP(Z,) — TP(Z,/T(1)) as an analogue of the following
map induced by the ¢-de Rham point:

prar : Spf Z,[B] = (Spt Zy[q — 1])/FX — (Spt Zy[q — 1])/Z 2 WCart,.

This map classifies the prism (Z,[p], (p)), and can reasonably be called the p-de
Rham point.

As explained in the end of the introduction to [HRW22], one hopes that the
unit map S — TP(Z,) induces the map WCartz, — Mg classifying Drinfeld’s
formal group over WCartz, = ¥ from [Dri21] on the associated graded of the
motivic filtration. If Conjecture [2.2.19 were true (i.e., there is an equivalence
TP(Z,/T(1)) ~ BP(1)!S" of spectra), the resulting unit map S° — TP(Z,/T(1)) —
BP(1)!S" would just be the unit of the Eo-ring BP(1)!S". Since BP(1) is complex-
oriented, the formal group over 7T0BP<1>tSl & Zp[p] must be isomorphic to the
formal group of BP(1), i.e., the p-typification of the multiplicative formal group. In
particular, the aforementioned expectation about the formal group over WCartz,
and its relation to TP(Z,) would predict that the pullback of Drinfeld’s formal
group over WCartz, along the map ppqr is the p-typification of the multiplica-
tive formal group over Z,[p]. This is indeed true, and was proved in [Dri21]
Section 2.10.6]. This lends further evidence to the idea that the map TP(Z,) —
TP(Z,/T(1)) is a homotopical analogue of the p-de Rham point of WCartz, .

4.2. Comparing THH relative to T(n) and T'(n + 1). Recall from Theo-
rem that . (THH(BP(n)/T(n+ 1)) ®pp(,) BP(n — 1)) is (additively) equiva-
lent to the “subalgebra” BP(n — 1) [0* ] of m, THH(BP(n — 1)/T'(n)) = BP(n — 1).[0,,—1]-
This picture has an analogue over Mpg, as we now explain. We first need a simple
calculation.

Remark 4.2.1. Let R be a commutative ring, and let € R be a regular element.
Then there is a p-completed equivalence AR/, r =~ R[E(2") /2 @R(1)/e AR(1)/2(dt)
with |2/| = 0. Indeed, this follows from combining the observation that R[t]/x =
R[t] ®r R/x with the following p-completed equivalences: dRpyy,p =~ Agp(dt),
dR%/, g =~ R(z')/x. Similarly, there is an equivalence HH(R[t]/z/R) ~ RI[t][S" x
CP™|/x.

Example 4.2.2. Let i1 : Z(vn—1) = Mp(y,) denote the closed substack cut
out by the global section v,_1 € HO(MT(n);OMT(n)). Ify: X — Mpp) is a
stack over My, let X?»-1=0 denote the pullback of X along i,_i, and let f :
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Xvn1=0 — Z(vy—1) denote the structure morphism. Then i}, HH(X/Mp,)) =
HH(XV»-1=%/2(v,_1)). In the case X = Spec(BP(n).)/G,, there is an isomor-
phism XVn-1=0 = Spec(BP(n — 1).)/G,. We will now relate HH(X V170 /Z(v,,_1))
to HH(X"=1=% /My, _1)) by calculating HH(Z (vp—1)/Mrp(n_1))-

Recall from Examplethat there is a G4-bundle My () — Mp(,—1). Note
that Lot ., /Mp_ 18 @ free One,(,, -module of rank 1 generated by a class d(t,),
and that LZ(vnfl)/MT(m is a free Og(,,_,)-module of rank 1 generated by a class

0%(vp—1). Applying Remark we find that
(46) 71-*HH(Z’(vn—l)/j\/tT(nfl)) = OZ(vn,1)<0’2(Un—1)> ®OZ(1)”71) Aoz(vn,l)(dtn)'

We therefore see that HH(X =% /Mp(,,_1)) a subquotient of the tensor product of
HH(XU1L71:O/Z’(U7L71)) and f*HH(Z(vnfl)/MT(n—l)) = OX’”n71=O <U('Un71)> [dtn}/(dtn)2
Let us now take f to be the morphism Spec(BP(n —1),.)/Gpn, — Myp(n). The E?-
page of the Adams-Novikov-Bokstedt spectral sequence for THH(BP(n — 2) /T (n —

1)) is given by

E?, =BP(n—2).(c%v;|j > n—1) @pp(n_1). Apn_1y. (dt;]j > n),

and the extensions on the E°°-page are given by (J2vj)pn_j = ¢2v,. The above

discussion therefore shows that f*HH(Z(v,—1)/Mp,—1)) precisely detects the “bot-

tom piece” of this E%-page, i.e., the subalgebra BP(n — 2),(c%v,_1) ®BP(n—2).
ABp(n—2), (dt,). Therefore, the preceding calculation of HH(Z(vn—1)/Mp(n-1))
gives one explanation for why 7,.(THH(BP(n —1)/T(n)) ®gp(n—1) BP(n —2)) is
(additively) equivalent to the “subalgebra” BP(n — 2).[6" _,] of 7, THH(BP(n — 2) /T (n—
1)) = BP(n — 2),[0,_2]-

Remark 4.2.3. We can extend the analysis of Example further. Let 0 <

Jj <n—1,and let ij... n 1 : Z(v},n) — Mg denote the closed substack

cut out by the global sections v;, - ,v,—1 € HO(MT(H);OMT(")). IfTf: X —

Mz () is a stack over My, let XV vn-1=0 denote the pullback of X along

i, and let f : XViron-1=0 Z(vjny) denote the structure morphism. Then

i% . HH(X/Mp(ny) is equivalent to HH(X "5 "n=1=0/Z(v(; ))). In the case

X = Spec(BP(n — 1).)/G, there is an isomorphism X% ?n=1=0 = Spec(BP(j — 1)4)/Gn.
We can now relate HH(X 7 »0n=1=0/Z (v, 1)) to HH(X 5> 0n=1=0 /M ;) ) by cal-

culating HH(Z(v(j,,))/Mrp(jy)-

We claim that there is an isomorphism

HH(Z(v}.m)) /M) = Oz, ) (0 (vi)li <i<n =10y, Ao, (dhli+1 <i<n)

To prove this, we will use descending induction on j; the base case j = n — 1 was
studied in Example [£.2.2] For the inductive step, suppose we know the result for
J+1. Let i; : Z(vjjn)) — Z(vj41,- - ,vn—1) denote the closed substack cut out by
v;. Then there are isomorphisms

SHH(Z(vj1, - 5 vn—1)/Mr(i41))
Oz(vu,n))<‘72<vi)|j +1<i<n—1) ®Oz(v[j,">> Aou,,[jyn))(dtﬂj +2<i<n)

’Uj:O ~
HH(Z(’U[J’,”))/MT(J’JA)) =1

1%

Recall that Example gives an isomorphism between HH(M;j(j_?_l) /Mrjy) and

OMUj:o)<02(vj)>®O o Moo (dtjy1). The desired calculation of HH(Z (vy;,n))/Mr(j))

T+t Moy Moy
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is now a simple computation with the transitivity sequence for the composite
2(vm) = MG ar) — Mrg).

Let X = Spec(BP(j —1).)/Gm, and let f : X — Z(v[;,)) be the structure map.
Then the above discussion implies that HH(Spec(BP(j — 1).)/Gy/Mp(;y) is iso-
morphic to the tensor product of f*HH(Z(v(;,n))/Mr(;y) and HH(Spec(BP(j — 1)4)/ G /Z(v[jn)))-
This gives the E?-page of the Adams-Novikov-Bokstedt spectral sequence comput-
ing m, THH(BP(j — 1)/T'(j)) (see Remark [£.1.5)), and one can run this spectral se-
quence as in Proposition If BP(j — 1) admits the structure of an Ez-algebra,
there are extensions o2 (v;)? = 02(v;41) modulo decomposables on the E>-page of
this spectral sequence.

Let T'(n)/v}j,n) denote T'(n)/(vj, - -+ ,vp—1). Since 0; € m, THH(BP(j — 1)/T(j))
is represented by 02 (v;), we find that THH(T(n% n/T(j)) is (additively) equiva-

lent to as T'(n)[0;]/ (v n), 9;7”_] ). (See Remark [4.2.5|for a more topological perspec-
tive on this observation.) This discussion provides an algebraic perspective on why
T THH(BP(n — 1) /T(n))/v(;n) is (additively) equivalent to as the “subalgebra” of

J

. THH(BP(j — 1)/T(j)) generated by 67" .

Remark 4.2.4. In topology, Example plays out as follows, if we assumﬂ
Conjecture Let n > 1. We begin by observing that T'(n)/v,—1 is the
Thom spectrum of an E; map p : QJp,l(SQPWI) — BGL1(T'(n — 1)); in par-
ticular, T'(n)/v,—1 admits the structure of an E;-ring. To see this, we first de-
fine the map u as follows. There is a map S2P" ' — B2GLy(X(p" — 1)) which
detects the class v,—1 € mypn—1_9X(p" — 1), which naturally extends to a map
Jp_1(S2" ) = B2GLy (X (p™ — 1)) since we are working p-locally. Therefore, we
obtain an E;-map QJp,l(Szpnfl) — BGL; (X (p™—1)). The projection X (p"—1) —
T(n — 1) is a map of Ea-rings by Conjecture and therefore induces an
E;-map BGL;(X(p™ — 1)) — BGL1(T'(n — 1)). Composition with the E;-map
QJp_l(SQPWI) — BGL1(X(p™ — 1)) produces the desired map p. The fact that
the Thom spectrum of p can be identified with T'(n)/v,—1 can be proved directly
using below. It follows from this discussion that there is an equivalence

THH(T (n) /vn—1/T(n = 1)) = T(n)[Jp-1(S*" )] fvn1.

Moreover, under the equivalence THH(BP(n — 2)/T(n—1)) ~ BP(n — 2)[QS5?""  +1]
of Theorem [2.2.4|a), the map THH(T'(n) /v,—1/T(n—1)) — THH(BP(n — 2) /T (n—

1)) induced by the map T'(n)/v,—1 — BP(n —2) is given by the skeletal inclu-

sion of J,_1(S2" ") = Q52" +1. The projection THH(BP(n — 2)/T(n — 1)) —

THH(BP(n — 1)/T(n))/v,—1 can be identified with the effect on BP(n — 2)-chains

of the James-Hopf map Q52" ' +1 — Q82°"+1, Therefore, the EHP sequence

Jp1(S%") 5 Q8% L g% A

shows that THH(BP(n — 1)/T'(n))/v,—1 is (additively) equivalent to precisely as
the “subalgebra” of THH(BP(n — 2) /T (n—1)) generated by 62 ;. The above calcu-
lation of THH(T'(n)/v,—1/T(n — 1)) is a topological incarnation of the calculation

19T here is an unconditional variant of the following discussion, obtained by replacing T'(n)
with X (p"t! — 1). However, this comes at the cost of adding the spaces A, into the mix.
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of HH(Z(vy—1)/Mp(n—1)) in Example Indeed, the Adams-Novikov-Bokstedt
spectral sequence (see Remark [4.1.5) runs
(47)  E, =mHH(Z(vp—1)/Mr(n_1)) = mgre, THH(T (n)/vn—1 /T (n — 1)),

and the E2-page is given by . Again, one can establish analogues of the Bokstedt
differentials @ in the Adams-Novikov-Bokstedt spectral sequence, and thereby
obtain an alternative approach to the above calculation of THH(T'(n)/v,—1/T(n —

1)).

Remark 4.2.5. Let us continue to assume Conjecture[2.1.9] and let 0 < j <n—1.
Recall that T'(n)/v(; ny denote T'(n)/(vj, -+ ,v,—1). Recall that

F2[<127"'a<327<.j+17"'7<n] p:27
Fp[Cla e 7Cn} & AFP(ij e ,Tnfl) p> 2.
It is natural to ask if the discussion in Remark [£:2.4] extends to a description of
THH(T (n)/v(jn)/T(j)), paralleling Remark This is an ill-posed question,
since it is not clear that T'(n)/v[; ) admits the structure of an Ej-algebra. Nev-

ertheless, if T'(n)/v};,) did admit the structure of an E;-T'(j)-algebra, then an
analysis similar to Theorem [2:2.4] shows that

THH(T () /vj,n) /T (7)) 2 T(1)[ T3 -1 (S*")] /01;,m)-
This is the topological analogue of the calculation of Remark[4.2:3] Under the equiv-
alence THH(BP(j — 1)/T(j)) ~ BP(j — 1)[25%’*1] of Theorem [2.2.4(a), the map
THH(T(n)/v[jyn)/T(j)) — THH(BP(j — 1)/T(j)) induced by the map T(n)/v[j,n) —
BP(j — 1) is given by the skeletal inclusion of Jyn—;_1(S%") = Q5% +1. The pro-
jection

(48) H (T (n) /vy Fp) = {

THH(BP(j —1)/T(j)) = THH(BP(n —1)/T(n))/vjjn)

can be identified with the effect on BP(j — 1)-chains of the James-Hopf map 2527’ +1 —
QS%P"+1 Therefore, the EHP sequence

Jynei_1(S%) = QG+ 5 52" +1

shows that m, THH(BP(n —1)/T(n))/v; ) is (additively) equivalent to precisely
the “subalgebra” of m, THH(BP(j — 1)/T'(j)) generated by an_J.

Since THH(T'(n) /v(jn)/T(§)) =2 T(n)[Jpn—i_1(S*")] /v ny, one expects T'(n) /vy n)
to have an E;-cell structure over 7'(j) described by the cell structure of Jyn—; _;(S?").
Although we do not know how to prove this unconditionally, it is not difficult to
show if we further assume [Dev23al Conjectures D and E|. In this case, [Dev23al,
Corollary B] says that there is a map f : Q25%”’*! — BGL;(T(5)) which detects
vj € Tapi_2T'(j) on the bottom cell of the source, such that the Thom spectrum

of f is a form of BP(j —1). Le fnj - QJpnfj_l(SQPj) — BGL1(T'(j)) denote
the composite of f with the E;-map QJpnfj_l(SQI)]) — Q25?7+ Then the Thom

20In Remark 4.2.4] we described the map f,, ,—1 without assuming [Dev23al Conjectures D
and E|. It is generally not possible to describe f, ; similarly if j < n — 1: although there is a map

g207 B?GL1 (T(4)) Which detects v; € my,;_5T'(j), there are p-local obstructions to extending
along s2r7 Jpnfjfl(SZPJ) if n — 7 > 1. These obstructions can be viewed as the Es-Browder

brackets on v;; [Dev23al Conjecture E| implies that these Browder brackets can be compatibly
trivialized.
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spectrum of f,, ; is equivalent to T'(n)/v(;,») as a T'(j)-module. This is not quite an
“E;-cell structure” for T'(n)/v(; ), since f, ; is not an E;-map; nevertheless, this
construction of T'(n)/vj;,,) suffices to calculate THH(T (n)/v(j,5)/T(j))-

Example 4.2.6. If R is an Ey-algebra which is an E;-T'(n)-algebra, one can loosely
interpret the above discussion as saying that the square
(49)

R[Jpn-i1(S*")] = R @y THH(T(1) /v(j,0) /T(5)) — THH(R/vj )/ T(j))

| |

M THH(R/T(n))/v}jn)

exhibits the top-right corner as the “tensor product of the top-left and bottom-
right corners”. Note that the homotopy of the top-left corner is R[6;]/ 9§nﬂ. The
bottom-right corner should be thought of as THH(R/vy; /T (n)/v}jn)), although
it is difficult to make this picture precise (since T'(n)/v;,) does not admit the
structure of an Es-algebra).

For instance, if R = BP(n — 1), then the square says that the square

(50)
BP(n = 1)[Jpns 1 (5%)] ——— THH(BP(j — 1)/T(j)) = BP(j — 1)[25%"*1]

|

R THH(BP(n — 1)/T(n))/v}jn) ~ BP(j — 1)[25%" 1]

exhibits the top-right corner as the tensor product of the top-left and bottom-right
corners. This is essentially the observation that the map THH(BP(j — 1)/T(j)) —
THH(BP(n — 1)/T(n))/vjjn) sends 67* = 0 unless p™~7|m, in which case 67"

9;”/])”7].. This therefore explains the similarity between THH(BP(n — 1)/T'(n))
and THH(BP(j — 1)/T(j)) given by Theorem a).

Remark 4.2.7. As mentioned before, the lack of structure on the objects involved
above make it difficult to use the above picture to understand the multiplicative
structure on THH(BP(n — 1)); but it does point to a plan of attack. Namely,
one can attempt to understand the even filtration on THH(BP(n — 1))/vjon) by
considering the natural map THH(BP(n — 1))/vo ) — THH(F,). It is not hard to
see that this map is an eff cover, so that the stack associated to the even filtration
on THH(BP(n —1))/vp,) is the quotient of the scheme associated to the even
filtration on THH(F,) by a certain group scheme. The scheme associated to the
even filtration on THH(F,) is precisely G, and the above discussion suggests that
the stack associated to the even filtration on THH(BP(n — 1)) /v ) is isomorphic
to G, /W[F™]; this is also suggested by work of Lee in [Lee22|. We hope to study
this in future work joint with Jeremy Hahn and Arpon Raksit. To this end, we set
up some groundwork for future investigation of this stack in Appendix[C} where we
study some basic properties of W[F™].

Remark 4.2.8. The calculation of THH(7'(n)/v; »)/T(j)) in Remark shows
that more is true: if n > k — 1, the structure of BP(n) as an E;-X (p*)-algebra (i.e.,

THH(BP(n)/T(k))) mirrors the structure of BP(n — k) as an E;-algebra over the
sphere (i.e., THH(BP(n — k))).
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Remark 4.2.9. Note that the Thom spectrum of the map f, o has been stud-
ied in [MRSO01], where it was denoted y(n). Just as the y(n) describe a filtra-
tion of y(co) = F,, by Ej-algebras, the spectra T'(n)/v|; ) describe a filtration of
BP(j — 1). For instance, it is not difficult to show that for j < k <mn —1, the spec-
trum T'(n) /v, is Tel(k)-acyclic. Therefore, if T'(n)/v(;,) admits the structure
of an E;-ring, the same argument as [LMMT20], Corollary 4.15] implies that the
map K(T'(n)/vjjn)) — K(BP(j —1)) is an Tel(k)-equivalence for j < k <n — 1.
Since K (BP(j — 1)) is Tel(k)-locally contractible for k > j+ 1, the only interesting
case is k = j; in this case, we find that the maps

K(T(G+1)/v;) = K(T(G +2)/(vj,0j41)) = --- = K(BP(j — 1))
are all Tel(j)-equivalences.

Remark 4.2.10. Since T'(n)/v; ) is closely related to T'(j) by Remark -
it is natural to wonder if there is a relationship between T'(n)/v(; )y and T'(n +
E)/v(jntk), in a manner compatible with their relationship to T'(j). By Remark-
T(n+k)/vp,ntk) is the Thom spectrum of a map QJ,x 1 (S*") — BGL{(T(n)). It
follows that if T'(n)/vy; »y admits the structure of an E;-ring, then T'(n+k) /v n+k)
is the Thom spectrum of a map QJ,x_1(5%") — BGL(T(n)/v}jn)). As men-
tioned in Remark if we further assume [Dev23al Conjectures D and EJ, the
spectrum T'(n)/vjj ) (resp. T'(n + k)/v[jntk)) is the Thom spectrum of a map
QJpn—i_1(5%") = BGL1(T'(j)) (resp. QJpn+r—s_1(S?") = BGL1(T'(j))).

The relationship between the two presentations of T'(n+k)/v(; 41 (as a Thom
spectrum over T'(n)/vy; ) and over T'(j)) is explained by the following observation
in unstable homotopy theory: there is a fibratio

(51) Ty 1(S21) = Jomn 1 (52 Ly gy (524

Indeed, applying when m = n —j and d = p’, we obtain a fibration of E;-
spaces:

Qi 1 (SP) = Qluins 1 (%) s Q1 (5%7).

The composite of fr ik ; : QJpnﬁ»k—j,l(Sij) — BGL(T'(j)) with the map QJ,n—; _ 1(S2p ) —
Qpnik—5_1(S2P') is frj : QJpni_1(S%") — BGLy(T(5)). Therefore, [Dev23al
Proposition 2.1.6] implies that there is a map f,,1p,; 1 QJpr_1(S?*") — BGL(T(n)/v(jm))
whose Thom spectrum is T'(n+k) /v[j n4x). This is the desired relationship between

the various presentations of T'(n + k) /v n+k)-

Remark 4.2.11. Observe that the preceding discussion implies, in particular, that
there is a map qx : QJ,x_1(S?*") — BGL;(y(n)) such that the composite S~ —
QJ._1(S?") — BGL(y(n)) detects v, € Tapn_2y(n), and such that the Thom
spectrum of the map ¢ is y(n + k). Taking k¥ — oo, this implies that there is a
map ¢oo : 22521 — BGL;(y(n)) whose Thom spectrum is y(co) = F,. The map

2176 construct the fibration 1i recall that there is an EHP sequence
Jpm_1(S24) - g2d+1 Ly gg2dp™ 1,
By dimension considerations, the canonical map meJrkfl(SZd) — Q824+1 factors through

me+k71(52d) — kafl(Sdem) X gg2dpm41 252911 and one can easily check that this map

is an equivalence. This implies the desired fiber sequence li
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doo is adjoint to the Ej-map Q3Sf_pn+1 — y(n) from [MRSO01], Section 4.1] which
detects v,, on the bottom cell of the source.
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Appendix A. Analogues for ko and tmf

Many of the results from the body of this article extend to the case of ko and
tmf. In this section, we will state these results; since the proofs are essentially
the same, we will not give arguments unless the situation is substantially different.
We will specialize to the case p = 2 for simplicity. One of the main observations
in Theorem is that the structure of BP(n) as an E;-algebra over X (p™) (or
rather, T'(n)) mirrors the structure of Z, as an Ej-algebra over S°. For ko and
tmf, there are analogues of X (p™), which we studied in [Dev23al.

Recollection A.1. Let A denote the free E-algebra S//v with a nullhomotopy of v,
i.e., the Thom spectrum of the E;-map 2.5° — BGL; (S) which detects v € m3(S) on
the bottom cel]lﬂ This spectrum has the property that H,(4; Fy) = Fy[¢}] (in fact,
BP, (A) = BP, 120011 = BP, [t 4 v,t,]). There is an Ey-map i : A — ko such
that under the isomorphism H, (ko; Fa) = Fy[({, (3, (3, -], the map i corresponds
to the inclusion of Fy[¢(f]. In particular, the map A — ko is an equivalence in
dimensions < 4. There is in fact an E;-map A — MSpin, induced from an Eq-
map QS° — BSpin. There is also an E;-map A — X(2) = T(1), such that
T(1) ~ A® Cn. We note that the “Qo-Margolis homology” of H, (ko; Fs) (i.e., the
homology of Sq* viewed as a differential acting on H, (ko; F3)) is precisely H, (A4; Fy).

Similarly, let B denote the Ej-algebra of [Dev23al Definition 3.2.17]§|7 SO
that there is an Ej-space N such that B is the Thom spectrum of an E;-map
N — BString. We will not recall the construction of N here; we only say that B
is obtained from the E;-quotient S//o by further taking an “E;-quotient” by the
class in 711 (S//o) constructed from a nullhomotopy of vo € m19(S). This spectrum
has the property that H,(B;Fs) = Fy[¢}, (3] (in fact, BP.(B) = BP, [b4, ys|, where
by = t{ and y¢ = t2 modulo (2,v1,~~))|§_£\ There is an E;-map ¢ : B — tmf
such that under the isomorphism H,(tmf;Fy) = F[¢}, (3, (3, (4, -], the map i
corresponds to the inclusion of Fo[¢},(3]. In particular, the map B — tmf is
an equivalence in dimensions < 12. There is in fact an E;-map B — MString.
There is also an E;-map B — T(2) such that T(2) ~ B ® DA;, where DA, is
an 8-cell complex whose mod 2 cohomology is isomorphic to the subalgebra of
the Steenrod algebra generated by Sq? and Sq*. We note that the “Qo-Margolis
homology” of H, (tmf;F5) (i.e., the homology of Sq! viewed as a differential acting
on H, (tmf; Fy)) is precisely H,(B; Fa).

The following was implicitly stated in [Dev23al, but we make it explicit here:

22The spectrum A has been studied before by Mahowald and his coauthors in [Mah79,
DM&1), Mah81bl, [Mah81al, Mah82, MU77|, where it is often denoted Xs.

23The E;-ring B has been briefly studied under the name X in [HIMO02].

24For the sake of illustration, we remark that if p = 2, then b4 can be taken to be the following
cobar representative for o = ay,4, where the v;s are Hazewinkel’s generators:

1 /nr(vd) — vt
by = — na(vy) Z v (nr(v1v2) — v1v2)
2 8
= 515411 + Qt?vl + 7t%’u% — 2t1to + 2t1'u% — tivgy — tovy.
Here, we used the formula

nR(’Ug) = vy — 5v1t% — 3’L)%t1 + 2tp — 4t?.
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Conjecture A.2. The E;-algebra structures on A and B admit extensions to Eff -
algebra structures such that the maps A — X(2), B — X(4)2), A — ko, and
B — tmf admit the structure of EY-maps.

A calculation paralleling Proposition shows:
Proposition A.3. Assume Conjecture[A.3. There are isomorphisms
H..(THH (ko/A); F2) = H. (ko; F2)[0(C3)] @, Ar, (0(C3)),
H. (THH(tmf/ B); F2) 2 H, (tmf; F2)[0(C1)] @, Ay (0(C2)).
Here, |o(C3)| =8, [0(¢3)| =7, |0(Ca)| = 16, and |o(¢3)| = 15.
Using the Adams spectral sequence for m, THH(ko/A) and 7, THH(tmf/B) as
in Theorem [2.2.4b) (and using ko- and tmf-linearity), one finds:
Theorem A.4. Assume Conjecture[A.9. Upon 2-completion, there are equivalences
THH(ko/A) ~ ko ® @D =% ~'ko/2,
Jj=1
THH(tmf/B) ~ tmf & @5 ©'% ' tmf/2;.
i>1
Remark A.5. Since ko® Cn =~ ku, Theorem implies that THH(ko/A) ® Cn ~
THH(ku/T'(1)). Relatedly, there is an equivalence ko® T'(1) ~ ku[Q255] of E1-T'(1)-
algebras, which implies that
THH(ko) ® T(1) ~ THH (ko ® T(1)/T(1)) ~ ku[S°] & €D % ~"ku[5°] /2;.
i>1
Along similar lines, Theorem A 4]implies that THH (tmf/B)®DA; ~ THH(BP(2)/T(2)).
There is also a 2-local equivalence tmf ® T'(2) ~ BP(2)[N] of E;-T'(2)-algebras, so

that
THH(tmf) @ T(2) ~ BP(2)[BN] & @) ©'~'BP(2)[BN]/2j.

Jj=1
Note that BP(2)[N] ~ BP(2)[Q5? xQS5"3], so that m, (tmf®T'(2)) = Z(s)[v1, va, T3, Y12],
where |v1] = 2, |va| = 6, |zs| = 8, and |y12| = 12. This gives a potential ap-

proach to calculating THH (ko) (resp. THH(tmf)) via the T'(1)-based (resp. T'(2)-
based) Adams-Novikov spectral sequence. Describing this spectral sequence is es-
sentially equivalent to calculating the analogue of the topological Sen operator for
THH(ko/A), whose construction is described below in Construction

Remark A.6. Recall from Figure [I| that the structure of ko over A mirrors the
structure of tmf over B, which in turn mirrors the structure of BP(n) over T'(n);
in other words, the calculation of Theorem is along the diagonal line (n,n) in
Figure [1} It is natural to wonder whether there is an E;-ring A equipped with an
Ei-map A — A and an E;-map A — ko such that the structure of ko over A mirrors
the structure of BP{n — 1) over T(n). (This is the “off-diagonal line” (n,n — 1) in
Figure ) This question is only interesting when p = 2, since ko, splits as a direct
sum of even shifts of BP(1) if p > 2. Let us localize at 2 for the remainder of this
discussion. Examining the argument establishing Theorem [A74] when p = 2, one
finds that the mod 2 homology of A must be H, (4;Fs) = Fo[({, (2].

If A admits the structure of an Eff-ring, then A can be constructed as follows.
The class 01 € 75(A) determined by a nullhomotopy of nv (see [Dev23al Remark
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3.2.17]) defines a map S% — BGL;(A), which, thanks to our assumption on A,
extends to an Ej-map Q57 — BGLi(A). The desired E;-A-algebra A can be
defined as Thom spectrum of this map. (According to [Dev23al Remark 5.1.5],
one should not expect A to admit a natural construction as a Thom spectrum over
the sphere.) Note that A ® Cn ~ T/(2).

The same argument as Theorem a) shows:

Proposition A.7. If both A and A admit the structure of Ef -rings and ko admits
the structure of an Eq-A-algebra, then there is a 2-complete equivalence

THH(ko/A) ~ ko[25°],
where the generator in ms THH(ko/A) is 02(vs). Moreover,
Motivated by Proposition [A77] and Conjecture [2:2.8] we are led to conjecture:

Conjecture A.8. Suppose that A admits the structure of E-rings and ko admits
the structure of an Bq-A-algebra. Then there is an S*-equivariant map THH(ko/A) —
tmf'%/2. This refines to an S*-equivariant Eoo-map THH(ko)’fZ/2 — tmftZ/Q, which

is an eff cover in the sense of [HRW22)].

Remark A.9. Similarly, if B admits the structure of an Ef-ring, the class oy €
m13(B) from [Dev23a, Remark 3.2.24] defines a map S'* — BGL;(B). Thanks
to our assumption on B, this extends to an E;-map Q5 — BGL;(B). Define B
to be Thom spectrum of this map, so that H,(B;F,) = Fy[¢?, ¢4, ¢2]. Note that
B® DA, ~T(3).

If B admits the structure of an Efl-ring and tmf admits the structure of an
El—é—algebra, then the same argument as in Theorem a) shows that there is
a 2-complete equivalence

THH(tmf/B) ~ tmf[QS'7],
where the generator in 1 THH(tmf/B) is 02(v3). Moreover,

Construction A.10 (Topological Sen operator for THH relative to A). Assume
that A admits the structure of an Eff-ring. By [BCS10, Theorem 1], THH(A) is
equivalent to the Thom spectrum of the composite

£S5 2% LB2GLy(S) ~ B2GLy(S) x BGL1(S) “2% BGL,(S).
There is a nonsplit fiber sequence
(54) QS5 — £S5 = S5,

and the restriction of the above composite along the map 5% — £5° is the map
QS® — BGL4(S) which defines A. It follows from the fiber sequence that
THH(A) is the Thom spectrum of a map S® — BGLj(A) which detects a class = €
m4(A) = 74(ko). In particular, THH(A) is an A-module with two cells. Now assume
Conjecture then |DHL™23, Corollary 2.8| gives a splitting THH(A) — A,
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which implies that the class € m4(A) must be trivial. In other words, THH(A) ~
A[S5]. If € is an A-linear oo-category, this implies the existence of a cofiber sequence

(55) THH(€) — THH(C/A) 25 SOTHH(C/A).

One should be able to recover the calculation of THH(ko) from [AHLIO0| using
in the case € = Mody, and the calculation of Theorem |A.4] Similarly to

Remark Theorem and imply that
THH(ko/A)/2 ~ ko[S" x Q5°]/2,
THH(ko) ®xo Fa ~ F3[S° x ST x Q8Y].
The latter of these has been proven by Angeltveit-Rognes in [ARO05] Theorem 6.2].
Remark A.11. Recall from [MR99l Corollary 9.3] that Mahowald-Rezk duality
gives an equivalence Wko ~ %%ko (resp. WBP(1) ~ X2PBP(1)); the shift of 6 (resp.
2p) in this equivalence arises for the same reason as in (resp. with n = 1):

both correspond to the class o2(¢3) (resp. o2(t1)). We hope to explore this further
in future work.

Remark A.12. One can use Theorem [A4] to show the following equivalences
analogous to Remark [2:2.5}
THH(tmf/B)/2 ~ tmf[S*® x QS'7]/2,
THH(tmf) Qs Fo ~ Fy[S? x §13 x S5 x Q5'7);

note that Fo[S%x S?] ~ Fo[BN]. The latter of these has been proven by Angeltveit-
Rognes in [ARO5] Theorem 6.2].

Assume Conjecture and let p = 2. Then there is a map Mpq) — My of
stacks over Mpq, which exhibits My ;) as a 2-fold fppf cover of M 4. Recall that
My () is isomorphic to the moduli stack of graded formal groups equipped with a
coordinate up to order < 2 (equivalently, order < 3 for 2-typical formal groups).
Similarly, we have:

Proposition A.13. The stack M4 is isomorphic to the moduli stack of graded
formal groups equipped with an even coordinate up to order < 5.
PROOF. Recall that there is a fiber sequence
SU(2)/U(1) = §? — BU(1) ~ CP> — BSU(2) ~ HP>.
Let n > 1. There is a homotopy equivalence HP"™ xgpw~ CP™ ~ cpintl (since

§4n+3/SU(2) = HP™ and S*"+3/U(1) = CP?"*!), which produces the “twistor
fibration”, i.e., the fiber sequence

(56) 5% » cp*tl 5 HP".
The map CP*"™! — HP™ is given in coordinates by the map [21 -t zopga] —
[21 + 22] : -+ & zapt1 + zant2j]. Note that SU(2)/U(1) = CP! is the unit sphere

S(su(2)) in the adjoint representation of SU(2), so equivalently says that
CP?" " is the sphere bundle of the adjoint bundle of rank 3 over HP™.

Let R be a complex-oriented homotopy commutative ring with associated for-
mal group G over 7. (R); we will assume for simplicity that 2 is not a zero-divisor
in 7,R. Then R*(CP®) is isomorphic to the ring of functions on G which vanish
to order > 6. The Serre spectral sequence associated to the fiber sequence (56|)
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implies that R*(HP?) is isomorphic to R*(CP°)%/2  where Z/2 acts by inversion
on the formal group. This implies the desired claim, since there is an equivalence
HP?2 ~ 34Cv of spectra, and A is the free E;-ring whose unit factors through the
inclusion S° — Cw. O

Remark A.14. The description of M4 in Proposition has concrete applica-
tions; for instance, in [Dev22|, we show that Mimtga = Ma Xpe Men can be
identified with the moduli stack of elliptic curves € equipped with a splitting of the
Hodge filtration on HéR(E), and use this to describe an topological analogue of the
integral ring of quasimodular forms.

Remark A.15. Asexplained in [Dev23al Remark 7.1.7], there is a Z /2-equivariant
E;-algebra Az, whose underlying E;-algebra is A, and such that @Z/2Az/2 =
X (2)(2) as Ej-algebras. This is a topological interpretation of the following ob-
servation suggested by Proposition [A. T3} My, is “half” of My (z); more precisely,
there is a two-fold fppf cover Mx 2y — Ma. This is an algebraic analogue of the
equivalence A ® Cn ~ X (2).

We also note that there is a Z/2-equivariant analogue of the fiber sequence
(56): namely, there is a Z/2-equivariant twistor fibration

§f —————CPP ! — .\ P!

N

S2p71/SU . S2np71/Sa . S2np71/52p71.

IR

where Z/2 acts on HP" via the action of Z/2 C S' C SO(3) on H. The underlying
fibration is , while the Z/2-fixed points gives the fibration

St 5 Rrp?t 5 cpnt

which exhibits RP?"~1 as the sphere bundle of the complex line bundle O(2) on
cpl.

Construction A.16. One consequence of the identification of M, in Proposi-
tion is that M4 — Mgpg is an affine bundle, so that the pullback of the
cotangent complex Ly, /ntpg t0 Spec(BP,(A))/Gy, =2 Spec(BP,[t] + vit1])/Gm
can be identified with a free BP, [t} 4 v1t1]-module of rank 1 generated by the class
d(t? + v1t1) in weight 2. Using Recollection we obtain the algebraic analogue
of : if X is a stack over M 4, there is a cofiber sequence

HH(X/Mpc) — HH(X/M4) 2225 S63HH(X/M,).
The stack My, can be identified with the moduli stack of curves of the form y =
22 + bx + ¢ with change of coordinate  +— x +r, and HH(Mj,/Mpq) describes the
E;-page of the Adams-Novikov-Bokstedt spectral sequence calculating THH (ko)

(see Remark [4.1.5). Tt would be interesting to explicitly describe HH(My,/Mrg);
note that

™ HH(Mio/Ma) 2 Oy, (00515 > 2) @0, Mooy, (dtili > 2),

where az(vj) lives in degree 271! and weight 27, and d¢; lives in degree 2t —1 and
weight 2¢. This can be proved exactly as in Example weight considerations
presumably allow one to fully describe O ot : HH(X/M4) — SO3HH(X/M4), and
hence HH(My,/Mpc).
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Remark A.17. Assume Conjecture [A:2] and let p = 2. It is trickier to describe
the stack Mg in a manner analogous to Proposition[A13] As a first approximation,
if we assume that S//o admits the structure of a homotopy commutative ring, one
can attempt to describe the moduli stack Mg/,. However, it is provably impossible
to construct a Hurewicz fibration

S - HPY - OP?

in the point-set category. This is a consequence of [Sch81] Theorem 5.1], which
states more generally that if F — E — X is a Hurewicz fibration where F is
homotopy equivalent to HP?"*! and F and X are homotopy equivalent to finite
CW-complexes, then either F' or X must be contractible. Note that this result
implies that there cannot even be a Hurewicz fibration

St - HP? — S8
Similarly, there cannot be Hurewicz fibrations
CcP? - CP" — S8,
CP® —» CP" — OP%;
see |[LV94] for the impossibility of the first Hurewicz fibration (which implies the
impossibility of the second Hurewicz fibration). These no-go results make it difficult

to give a formal group-theoretic description of R*(OP?) (and hence of Mg /o> Since
OP? ~ ¥8Cc) where R is a complex-oriented homotopy commutative ring.

The story for ko admits a slightly different generalization to higher heights.
Example A.18. Observe that S° = SU(4)/Sp(2), and that the map QS° — BU

(whose Thom spectrum is A) can be viewed as the composite
Q(SU4)/Sp(2)) — 2(SU/Sp) ~ BSp — BU.
The equivalence 2(SU/Sp) ~ BSp is given by Bott periodicity, and the map BSp —
BU takes a symplectic bundle to its underlying unitary bundle.
Motivated by Example we are led to the following definition:

Definition A.19. Define an Ej-algebra Xg(n) via the Thom spectrum of the
composite
Q(SU(2n)/Sp(n)) — 2(SU/Sp) ~ BSp — BU.
There is a canonical E;-map Xg(n) — Xg(co) = MSp.
The spectrum Xgr(n) has been studied by Andy Baker.

Remark A.20. See [CMB88| for a detailed study of the space Q(SU(2n)/Sp(n)).
Let us note that if SU(2n)gy denotes the Z/2-equivariant loop space with the Z/2-
action given by the symplectic involution

bn
-1 ;_ (0 -1
A JAJ ’J_<1 0) ,
then Q(SU(2n)/Sp(n)) ~ (Q°SU(2n)5)%/2. Indeed, the fixed points of SU(2n)u
is Sp(n) (by definition), so we can apply the first sentence of Example |3.3.20| to
conclude.
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Normed division algebra R C H
E;-ring y(n) C®*PX(2")r  T(n) C X(2")  Xu(2")
Limit as n — oo F, C ®2/°2MUg = MO BP C MU MSp
Mod 2 homology F2[<17 T 7<n] F2[<127 T 7(7%] FQ[C%? e ’C’ilL]

TABLE 2. The analogies between y(n), T'(n), and Xg(n), where
the implicit prime is p = 2. The inclusion y(n) C ®%/2X(2")g
is discussed in Example see [Yan92|. The final row is to
be interpreted as follows: H,(®%/2X(2")g;F3) is a direct sum
of even shifts of Fy[(y,- -+ ,(,]; similarly for H,(X(2");F3) and

Remark A.21. As the notation indicates, Xg(n) should be viewed as a quater-
nionic analogue of the X (n) spectra from [Rav84]; see Table
Note that there are isomorphisms of algebras

H. (872X (n)r; F) & H.(Q(SU(n) /SO(n); F) = Fala, - ],
H. (Xz(n): Z) = H,((SU(2)/Sp(n)); Z) = Zly1, - , 1],

where |z;| = j and |y;| = 4j.
Example A.22. By construction, Xg(2) ~ A= S//v.

Construction A.23. Suppose that Xg(n) admits the structure of a homotopy
commutative ring. One can then also ask for an interpretation of the stack Mx,, ()
analogous to Proposition It turns out that the difficulties of Remark are
no longer an issue for Xz(n). Indeed, the analogue of the map S* — Q55 (whose
Thomification is the map Cv — A used in the proof of Proposition is given
by a map ¢ : HP"~! — Q(SU(2n)/Sp(n)) which exhibits HP™" ! as the generating
complex of Q(SU(2n)/Sp(n)). (See, e.g., [CM88| Proposition 1.4].) Moreover, the
composite

HP" ' 5 Q(SU(2n)/Sp(n)) — Q(SU/Sp) ~ BSp

factors as HP"~! — HP> ~ BSp(1) — BSp. Since the Thom spectrum of the
tautological quaternionic line bundle over HP"~! is X ~*HP", the map ¢ Thomifies
to a map X *HP" — Xg(n).

Using the twistor fibration and the map X *HP" — Xg(n) of Construc-
tion [A223] one can argue as in Proposition [A:13] to show:

Proposition A.24. The stack Mx,,(n) is isomorphic to the moduli stack of graded
formal groups equipped with an even coordinate up to order < 2n + 1.

Remark A.25. Suppose that Xg(n) admits the structure of an Ef-ring. There is
also a canonical map My, (n—1) — Mxyy(n) Which exhibits Mx, () as the quotient
of Mxy(n—1) by the group scheme G,(fnfz)/Gm over BG,,,, where G((f"*z) denotes
the affine line with G,,,-action of weight 2n — 2. This is the algebraic analogue of
the following:

Lemma A.26. The spectrum Xu(n) is equivalent to the Thom spectrum of a map
Q54=3 — BGLy(Xu(n —1)).
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ProOF. By [Dev23al Proposition 2.1.6] (see also [Bealf]), it suffices to es-
tablish that there is a fiber sequence of E;-spaces

Q(SU(2n — 2)/Sp(n — 1)) = Q(SU(2n)/Sp(n)) — Q5473

To see this, observe that there is a diffeomorphism SU(2n)/Sp(n) = SU(2n —
1)/Sp(n — 1), and hence a fibration

SU(2n —2)/Sp(n — 1) —— SU(2n — 1)/Sp(n — 1) —— SU(2n — 1)/SU(2n — 2)

| | :

SU(2n — 2)/Sp(n — 1) ———— SU(2n)/Sp(n) Gin=3,

IR

The desired fiber sequence is obtained by looping the bottom row. O

Remark A.27. On the bottom cell of the source, the map Q254" =3 — BGL;(Xg(n—
1)) defines a class xH € my, 5 Xm(n — 1), and xE. is detected in the Ex-page of
the Adams-Novikov spectral sequence for X (2" — 1) by 2 modulo (p, vy, ,v,).
Moreover, if Xg(n — 1) admits the structure of an Ef-ring and Xg(n) admits the
structure of an E;- X1 (n—1)-algebra, then THH (X5 (n)/Xw(n—1)) ~ Xg(n)[Q5*"~3].

We can then conclude (as in Theorem and Example 4.1.10) that if C
is an Xg(n)-linear oo-category and X is a stack over Mx, (n), then assuming an
appropriate analogue of Conjecture [3.1.2] one obtains cofiber sequences

THH(C/Xgx(n — 1)) — THH(C/Xg(n)) 25 S 2THH(C/ Xg(n)),
HH(X/ Moy (n-1)) = HH(X/M x5 () =22 S92 THH(X /Moy () )-

The second cofiber sequence only requires that Xg(n) admit the structure of a
homotopy commutative ring.
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Appendix B. Alternative calculation of QIZD /o

In this brief section, we give an alternative algebraic argument for Corol-
lary [3.2.15| following [BL22bl Example 5.15]. I am very grateful to Sasha Petrov
for an illuminating discussion about this entire appendix; see also [Pet23l Lemma
6.13)].

ALTERNATIVE PROOF OF COROLLARY [3.2.T5l Let R be a (discrete) commu-
tative Z/p™-algebra. Then [BL22bl Construction 3.8] implies that

Spec(Z/p")” (R) ~ Mapca,(Z/p", W (R)/V (1))
~{zeW(R)|zV(1)=p"} ={z e W(R)|V(Fz) =p"}.
Since V is injective, this is a torsor for W[F](R) = G¥(R). Moreover, this torsor
is trivializable, i.e., p™ is in the image of V' F. In fact, we claim that
(57) pr=VE ) =VEWV(E"?) e W(Z/p").

To see this, let us compute in ghost coordinates. Recall that if w(z) = (wo(z), w1 (x), - -
are the ghost coordinates of x € W(R), then wy41 (V) = pwy(z). Since w(p™) =
(p",p",--+) and w(V (p"~1)) = (0,p", p",-- ), we see that

w(pn - V(pn_l)) = (pnv 07 07 e )
Since the map Gf = W[F] — W sends 2 € G to the Witt vector whose ghost
coordinates are (z,0,0,---), the claim follows from the observation that p™ €
WIF(Z,) is sent to zero in W[F|(Z/p"). O

Remark B.1. As pointed out by Sasha Petrov, the preceding calculation also

determines the G -action on Spec(Z/p™)? as follows. The above discussion says

that the isomorphism G! = Spec(Z/p™)? sends & — x + V(p™~2). Under this

isomorphism, the action of g € G¥, on z + V(p"~2) € Spec(Z/p”)w is given by
g(z + V(") = go + gV (p"7?) = gu + V(F(g)p");

but F(g) = 1 since G¥, = W*[F], so that this can be identified with gz + V (p"~2).

In other words, the isomorphism G =5 Spec(Z/p™)? is equivariant for the scaling
action of G¥, on G¥,.

One can get a formula which is more “accurate” than via the following (see
also [II122] Page 56], where part of this statement is attributed to Gabberﬂ

Lemma B.2. Let y denote the element of W (Z,,) associated to the ghost coordinates
(1—prt1— pp2*1, «++). Then [p| + V(y) = p. Moreover, y = Fx for some
x € W(Zy) if and only if p > 2; in this case, x € W(Zp,)* (and hencey € W(Z,)* ).
If p = 2, then y[2™] is in the image of F for any m > 2.

Remark B.3. Let us assume p is odd for simplicity. Then Lemma [B22] implies
that p — [p] € W(Z,) is a unit multiple of V' (1), since p — [p] = V(y) = 2V (1) and
x € W(Zp)xm It follows from [BL22bl Construction 3.8] that if X = Spf(R) is a
bounded p-adic formal scheme, then the diffracted Hodge complex X? is given on
p-nilpotent rings S by X?(S) = X(W(R)/(p — [p])).

250ur understanding is that this result is quite well-known; some form is heavily used in
|[BMS18|.
26 Analogously, [2](2 — [2]) = [2]V (y) = V (y[4]) € W (Zy) is divisible by V(1) for p = 2.
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Remark B.4. Applying F to the identity [p]+V (y) = p, we see that [p?] = p(1—y).
In particular, the element a € W(Z,) of [Dri22| Lemma 4.7.3] can be identified
with 1 —y.

Remark B.5. Using Lemma[B:2] we can give an “alternative” formula for a preim-
age of p" under VF. Indeed, we have p = [p] + V(y) for some y € W(Z,), so
that p* = [p"] + S0y (P IV(y)" " in W(Z,). Because V(a)b = V(aFb) and
FV = p, we have V(a)" = V(p"la") by an easy induction on n. Moreover,
P11V (a) = V(aF[p']) = V([p*'a). Since [p"] = 0 € W(Z/p"™) (and hence in
W(R)), we have

= g (5)wiver— - g (vt rl) e wzin).

Assume p > 2, so that Lemma implies that y = Fx for some «x € W(Z,). The
multiplicativity of F' now lets us conclude that

p"=VF (g (?)pn‘i‘lx"_i[pio € W(Z/p"),

so that p™ € W(R) is in the image of V' F', as desired.
One can check that

f (?)p”‘i‘ly"_i[p’”}

=0

p"t e W(Z/p").

This is essentially an elaboration on the proof of Lemma[B.2] Indeed, applying wy,

we have
“ /n 12 /n j+1 j+1
I Sl i
o (B () = 5 (D)
i=0 Pz
— pnfl 7pp-7‘+1n71.
It therefore suffices to show that the Witt vector a € W(Z,) with coordinates
wj(a) = p?’"'n=1 vanishes in W (Z/p™), which follows from a direct calculation.

Let us end with a proof of Lemma the explicit formulas below are unnec-
essary for any conceptual development, but we included it since the computation
was rather fun.

Proor or LEMMA [B 2l First, it is easy to see that y is well-defined. Let
us now check that p = [p] + V(y). If w(z) = (wo(x),w1(x),---) are the ghost
coordinates of z € W(R), then wy,+1(Vz) = pw,(z). It follows that w,(Vy) =

p—pP". Since w([p]) = (p,pp,pp2, -++), we have
w(lp] +Vy) = w(lp]) + w(Vy) = (p,p,--+) = w(p),

so that p = [p] + V(y), as claimed.

To prove the claim about y being in the image of F, recall that if x € W(R),
then the ghost coordinates of Fz are given by w,(Fz) = wy,41(z). In particular,
y = F for some z € W(Z,) if and only if we can solve

L—p”" V=ab el 4+,
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for some xg,- - ,x, € Zp and all n > 1. This is impossible for p = 2. Indeed, first
note that we need 2 + 2z; =1 — pP~! = —1, so that 23 = 1 (mod 2) (and hence
zo =1 (mod 2)). Write xg = 1+2s, so that 3 +2x; = 1+4s(1+s)+2x;. In order
for this to equal 1 —pP~1 = —1, we need 4s(1+s)+2x; = —2, i.e., 71 =1 (mod 2).
This implies that 3 =1 (mod 8) and 23 = 1 (mod 4) (so 222 =2 (mod 8)). Since
17101’2’1 =-7= x3+2x%+4x2, we can reduce modulo 8 to find that 1 = 1+2+4x4
(mod 8). But then xs would solve 4z9 = —2 (mod 8), which is impossible.

Now assume p > 2. Since z§ + pz; =1 — pP~ !, we have 2§ = 1 (mod p); this
implies that a:gn =1 (mod p"*!). Writing xgn =1-—p"tls, for some s, € Z,, we
have 21 = ps; — pP~2. Since p > 2, we see that z1 = p(s; — pP~3) € pZ,. We claim
that x, exists and is an element of pZ, for n > 1. We established the base case

n = 1 above, so assume that 1, -+ ,z,-1 € pZ,, and let z; = pt;. We then have
n n n—1
plag =1—p" Tt —(xf +pr e p )
n n— n—1
:pn+1sn_pp —1 _pp 1+1t11) _"'_pp_‘_n_ltifp
so that ) -
Ty =psy —pP P —pP P Pl

This is clearly divisible by p since p > 2 (so that p* — 1 —n > 1 for n > 1).
Therefore, z,, exists and lives in pZ,, as desired. (Note that if p = 2 and n = 1,
then p® — 1 —n =0, so x1 & 2Zs.) If one prefers an explicit formula, the above
argument shows that once one writes g = 1 — psg, then x; = pt; for j > 1 can be
defined inductively by

n

P i1 n n—1
(71)Z+ p i p"—2—n pF—k—1 p*
t, = E 7pn+1—i ; So— P — E P [
=1 k=1

The first term is s,; note that #(1’;) € Z. Since g =1 (mod p) and z; =0
(mod p) for ¢ > 1, it is easy to see that all the ghost components of x lie in
1 +pZ, C Z); this implies that x € W (Z,) is invertible, as claimed.

Let us now assume that p = 2, and show that y[2™] is in the image of F' for
any m > 2. To see this, observe that the ghost components of y[2™] are given by

n ntl
wa (Y[2™]) = wa(y)wa((27]) = 2727 (1 - 2277 7).
We therefore need to solve
om2" (1 — 92"y = 2" p 22 4 ong,

2n71

for some g, , o, € Zy and all n > 1. When n = 1, we have 23 + 227 = —2™, so
that 22 = 0 (mod 2) since m > 0. It follows that x¢ = 2ty for some ty € Zy. We
now claim that z,, exists for n > 0 and lives in 2Z,. We established the base case

n = 0 above, so assume xg, 1, ,Tn_1 € 229, and write x; = 2t;. Then
2y, =2m" (1 =22 ) - (a2 4222 222 )
o (g @ 2T T )
so that
Ty =22 (L = 22"y (@22 2 L2 g2 ),

Because m > 2 and 2/ — j > 1 for every j > 0, we see that x,, € 2Z,, as desired.
(Of course, the key case is m = 2; when m = 1 and n = 1, the term 27"2”_1*"(1 —
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22"=1y = —1 ¢ 2Z,.) If one prefers an explicit formula, note that the above
argument shows that once one writes o = 2tp, then x; = 2¢; can be defined
inductively by

n—a*

n

n—1 n % - k3

tn _ 2m2 777,71(1 _ 22 71) _ § 22 72711&2
i=1

Note that x is not invertible in W(Z,); instead, since x; € 2Z,, the nth ghost
component wy,(z) € 2" 1Z. O
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Appendix C. Cartier duals of W[F"] and W*[F"]

This section was inspired by the results proved above, but it does not play an
essential role in the body of this article. Corollary below can be viewed as an
algebraic way to bookkeep the structure possessed by the topological Sen operators;
and, as we hope to show in future work, it sits as an intermediary between the
topological and algebraic Sen operators of Theorem and Example (see
Remark . We begin with the following (presumably well-known) result. I am
(again) grateful to Sasha Petrov for a relevant discussion on it.

Proposition C.1. There is an isomorphism of group schemes over Z,y between
WI[F™ :=ker(F™ : W — W) and the Cartier dual of the completion of W,, = W/V™
at the origin.

PROOF. Let us model W by the p-typical big Witt vectors. Given f(t) € W, let
ag, ai,asz, - - - denote the ghost components of f, so that tdlog(f(t)) =>_,.>¢ amt?"
Then f(t) € W[F™] if and only if a,, = 0 for m > n. -

Let us first prove the claim of the proposition when n = 1. Then, dlog(f(t)) is
a constant, and f(0) = 1; we claim that this is equivalent to the condition that f
defines a homomorphism G, — Gy, i.e., that f(z +vy) = f(2)f(y). To check this,
first suppose that f(z +y) = f(z)f(y). Then 0, f(x +y) = f(y)f'(z), so that

Of ) fl)
ety fa) - Al @)

is independent of y. Taking x = 0, we see that dlog(f(x)) is constant, as desired.
The reverse direction (that dlog(f(z)) being constant and f(0) = 1 implies that
f(o +y) = F(@)f(y)) is similar.

In the general case, note that since the Frobenius on W shifts the ghost com-
ponents by F' : (ag,a1,a9,-+-) — (a1,a2,as, ), the Frobenius F' applied to f
satisfies:

dlog(F?(f Z A t?

so that there is an equality of power series

FI(f)(t) = exp (Z ;:;u) .

m=0

Note that this is a slight variant of the the Artin-Hasse exponential. Define a map

g : W,, — G,, on Witt components (g, ,Zp—1) (not ghost components!) as
follows:
n—1n—j a
, +
9(@o, -+ wn 1) = [[ F/(F)aj) =exp | Y D ="
j= 7=0 m=0 p
n—1 a m )
_ m j.p"
=exp | Y om > p'af
m=0 7=0

The coefficient of ;;2 is precisely the mth Witt polynomial, so that the function

g is indeed additive on W,. Moreover, the assignment f +— ¢ indeed gives an
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isomorphism W[F"] = Hom(Wn, G,.), as one can check inductively using the
case n = 1 and the fact that it induces an isomorphism over Q. ([

Remark C.2 (Integral case). One does not need p-typicality for the above state-
ment to hold. Namely, if W denotes the big Witt ring scheme, it is a classical
fact that the Cartier dual of W over Z is canonically identified with W. As in the
p-typical case above, the pairing W x W — G,,, sends
wy (@)wn (b)
b) — _—
(a,) = exp [ > n

n>1

One only needs to check that this expression is in fact defined over Z. To see this,
first observe that if the Witt components of b are (b1,bs,---), we have

pn

Wy, (a)wy, (b wnj(a)j
exp Z% Lo [ 3 %

n>1 j>1 n>1

Note that wyj;(a) = w,(Fja), so that if (F;a)q denote the Witt components of Fja,
we have

exp ZM = ] - (Fa)ab)),

n .
n>1 7,d>1

giving the desired integral representation. In fact, the last step can be generalized
via the following rephrasing of the Dwork lemma:

Lemma C.3. Let R be a torsionfree ring equipped with ring maps ¢p : B — R
for each prime p such that ¢,(r) = r? (mod p) for all r € R. Let (Ty)n>1 be a
sequence of elements such that x, = ¢p(xy/,) (mod p’r(™) for each prime p and

everyn € pZso. Then f(t) := exp (Zn21 z’;fn> lies in 1+tR[t] C 1+t(RQ)[t].

PROOF. Let g(t) =1 —t € R[t], so that there is an identity

o(t) = exp(log(1 — ) =exp [ -3 ©

Because f(0) = 1, we can write f(t) = [[;5,(1 —rjt’) = [[;5, g(r;jt’) for unique
r; € R® Q. Since g(t) is integral, it is sufficient to show that the elements r; are
also integral. Applying dlog, we find that

Tpt™ , P
2 = dlog(f)(1) = Y dlog(g)(rjt)) = — 3
n>1 j>1 Jjmz>1
It follows that z, = — > jln jr?/ 7. One can now argue in exactly the same way as

the usual Dwork lemma (i.e., by induction on r; € R for j|n with j # n) to argue
that each r; is integral. (I

Let us remark that the argument above can be used to show that if VAV,} is the
completion of the big Witt vectors of length n over Z, the Cartier dual of W,, can
be identified with the subgroup of those a € W such that wg(a) =0 if d t n.
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Corollary C.4. Write the underlying scheme of W, as H?':_Ol G, (where the ith
copy of G, has coordinate ;). There is a fully faithful functor QCoh(BW[F"]) —
QCoh(W,,) whose essential image consists of those p-complete M € QCoh(W,,) such
that ®; acts locally nilpotently on H*(M/p) for each 0 < i < n—1. Furthermore, this
functor is symmetric monoidal for the convolution tensor product on QCoh(W,,).

If ¥ € QCoh(BWIF™]) is sent to M € QCoh(W,,) under this functor, one
obtains a cub ®, : 2ln—1 Modzp whose vertices are all M and such that the
edge from the subset {i1,--- ,i;_1} to {i1,--- ,1;} is given by the operator ®; : M —
M. Then, the global sections T(BW[F"];F) can be identified with the total fiber of
the cube ®,.

Remark C.5. More generally, the argument of Proposition shows that there
is an isomorphism of group schemes over Z,) between W, [F"] := ker(F™ : Wy, —
W) and the Cartier dual of W,,[F™]. One can give a simpler proof of this fact over
a perfect field k of characteristic p > 0 using the theory of Dieudonné modules: the
Dieudonné module of W,,,[F"] over k is W (k)[F,V]/(F"™, V™), while the Dieudonné
module of W, [F™] over k is W (k)[F,V]/(F™, V™).

The argument of Proposition [C.]] also shows the following result; this also
appears in [Dri21l Appendix D] and [AHL22| Section 2.2]:
Proposition C.6. Let G be the degeneration of G, to G, given by Spf Z(p [t, A, 1+t)\]
with group law x +y + Avy. Then the Z,)[A|-linear Cartier dual of G, is iso-

morphi to the group scheme D(Gy) = Spec Zy)[\ 2, M]
Spec Z ) [A] with coproduct z+— 2z @1 +1® 2.

1 _
over Ay =

PROOF. A homomorphism f : Gy — G, x A} is an element of Zyt, A, Hﬁ]{\

such that
fl+y+day) = f(x)f(y).

This condition implies that

L+ M) f (@ +y + Azy) = f(y) ' (2),
so that dividing both sides by f(z + y + Azy), we have

(14 Ay) - dlog(f)(z +y + Awy) = dlog(f)().
Taking « = 0, we see that dlog(f)(y) is a constant multiple of ;=5 (where the
constant is given by ’}((g))) and hence
n—1
— )\)
o Z/N _ H] 0 (Z J
F) =+ )t =3y ==

n>0

27Recall that [n] denotes the set {0, --- ,n}.

2810y convenience, write kutsl to denote the p-completion of ijtSl. It is useful to note
that if we set A = ¢ — 1 and complete at (p,A), the formal group G over Zy[g — 1] can be
identified with the formal group over mg (kutsl) induced by the canonical complex orientation of
the 2-periodic Eco-ring kutS". In other words, Gy = Spf(kuts1 )°(CP*), where (1«:uts1 )2 (CP>)
with equipped with the (p,q — 1,t)-adic topology. This implies that its Z,[q — 1]-linear Cartier
dual is Spf(kutS")o(CP>), where (kutS")o(CP>) is equipped with the (p,q — 1)-adic topology.
The calculation of this proposition can be interpreted as calculating the algebra (kutS ! )o(CP)
equipped with its Pontryagin product.
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for some fixed z. This gives the desired claim, similarly to Proposition [C.I] Note
that f(y) = exp(zlogp(y)), where logy is the logarithm of the formal group law
x + y + Axy over A}\. O

Remark C.7. Observe that D(G,) is isomorphic to the subgroup (W x A})[F +
[=A]P71 of W x A} cut out by {z|Fz = [-A\P~'z}; see [MRT19, Proposition
6.3.3] and [Dri21] Proposition D.4.10]. The key point is that if f(x) € W and
zdlog(f(z)) =>_,,>1 amx™, then f(t) € (W x A})[F + [-A]P7!] if and only if

e = (VP apn = (=0 gy,

To check this, note that

rdlog(f)(2) = T = (A=
n>0

so that a,, = (=\)™"1z, and a,,, = (=\)" "a, if m > n.

a

Remark C.8. A similar argument shows that if G denotes the group scheme
Spec Z/pN [A]{z) with group law = + y 4+ Azy (so that when A = 0, we get Gf),
then the Z/pY[A]-linear Cartier dual of G is isomorphic to the completion of
Spec Z/pN [\, 2] at the locus H’;;é(z —jA) = 2(zP7F — AP71) (see, e.g., [Dri21],
Section B.4]). It follows that the co-category of G-representations is equivalent to
the co-category of Z/p~N-modules M equipped with an operator z : M — M such
that z(zP~1 — A~1) acts locally nilpotently on H*(M ®z,,v F).

Recollection C.9. In [BL22al Lemma 3.5.18], Bhatt and Lurie show that the
following is a Cartesian square of group schemes over Z/p*:

log

(58) ng —_— Gg
J/a:r—ﬂexp(p:v)
G — G,

We will generalize this below in Corollary In [DM23]|, we prove another
generalization of this square, albeit in a different direction: G¥ is replaced by the
Cartier dual of a formal group G, and Gf _ is replaced by an appropriate G—analogue
of the divided power completion.

Corollary C.10. Let k > 0. There is an isomorphism of group schemes over Z /p*
between the Cartier dual of W*[F™] := ker(F™ : W* — W*) and the completion
of Wy, at its Fp-rational points W, (F,) = Z/p".

Proor. Following [BL22al, Remark 3.5.17|, it suffices to prove the following
analogue of [BL22al Lemma 3.5.18]: there is a Cartesian diagram of flat group
schemes over Z/p* given by

log

(59) WX[F"] — WI[F"]

l ix'ﬁexp(p"x)
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Here, the left vertical map W*[F"] — G,, is the composite
WX[F"] - WX = WXV = Gy,.

Indeed, taking the Cartier dual of and using Proposition we obtain a
pushout diagram of formal group schemes

Pz =7

L

W, — D(W*[F")).

This implies that D(W*[F™"]) is the completion of W,, at its F,-rational points
W (Fp) =2 Z/p™, as desired.

The proof that the square is Cartesian is in fact a consequence of [BL22al,
Lemma 3.5.18]. As in [BL22al Lemma 3.5.18], since all group schemes involved are
flat over Z/p*, it suffices to prove that the diagram is Cartesian after base-changing
to F,, (i.e., assume that k¥ = 1). Indeed, there is an isomorphism W*[F"] ~
WIE"™] x ppn of group schemes over F,, sending = — (log(x),z (mod V')): this can
be seen by induction on n (with the base case being provided by [BL22al Lemma
3.5.18)). O

Remark C.11. One could have alternatively/equivalently proved Corollary
by observing that the square for n — 1 maps to for n; all components of
this map of squares are the canonical ones, except on the bottom-right G,, (where

it is given by the pth power map G,, — Gﬁ,{)). Diagramatically:

WX[anl] log W[anl}
\ zrexp(p”~'z) \
W>< [Fn] o W[Fn]
(60) L
G, zoz?" Gggfl) z—exp(p"x)

z—xP
id
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Taking Cartier duals, we obtain a map of pushout squares:

s/ W,

N

Z D(W>[F"])

(61) {

Pz —— W

N S

Z D(W X [Fr1)).

Again, Corollary follows by induction on n, using [BL22al Lemma 3.5.18] for
the base case.

Corollary C.12. Write the underlying scheme of W, as H?:_()l G, (where the ith
copy of G has coordinate U; ). There is a fully faithful functor QCoh(BW *[F"]) —
QCoh(W,,) whose essential image consists of those p-complete M € QCoh(W,,) such
that U2 — U, acts locally nilpotently on H*(M/p) for each 0 < i < n — 1. Further-
more, this functor is symmetric monoidal for the convolution tensor product on
QCoh(W,,).

If F € QCoh(BW*[F"]) is sent to M € QCoh(W,,) under this functor, one
obtains a cube U, : 2[n—1 Modzp whose vertices are all M and such that the edge
from the subset {iy,--- ,ij_1} to {i1,--- ,i;} is given by the operator ¥; : M — M.
Then, the global sections T(BW*[F™]; F) can be identified with the total fiber of the
cube V.

Example C.13. If .G € QCoh(BW *[F?]) correspond to tuples (M, ¥ w)
and (M, ¥}, M) then the global sections I'(BW*[F2];F) can be identified
with the total fiber of the square

!
M ——

M
v J/\I/{”

M —— M.
!

Moreover, F ® G corresponds to the module M ® M’, where
pMEM _yM 1410w,

/ / C 1= p i "\p—i
MM — g @1 410 M —pz(i>(\lf§4) @ (WPt
i=1
More generally, if F, § € QCoh(BW *[F"]) correspond to tuples (M, W1 ... ,\I/nM_l_) v
and (M', UM ... WM ) let us write U := (g, Uy, - -- ). Let w;(¥) = S7_ piw?”
denote the corresponding Witt polynomial; then

(62) w (WMEMY — 4 (M) @ 1+ 1 @ w; (TM).
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Proposition C.14. Define a homomorphism W*[F"] — G, via the composite
WX[F"] - WX = (W/V)* 2 G,,.

Let O{1} denote the line bundle over BW>*[F™] determined by the resulting map
BW*[F"] — BG,,. Under the functor of C’orollary the total space of the
line bundle O{1} corresponds to the p-completion of Z,[x*!] with the action of U,
determined by the following requirement on Witt polynomials:

(63) w(P) = (wo(V), w1 (¥),wz(V), ) = (x0y, ©Op, XDy, -+ ).

PrOOF. The map BW*[F"] — BG,, determines the stack G,,/W*[F"] over
BW*[F"], so that the corresponding object in QCoh(W,,) under the functor of
Corollary has underlying module given by Og, = Z[zT!]. It is not too hard
to show from the definition of the map BW* [F""] — BG,,, that under the functor of
Corollary[C.12] the line bundle O{1} over BW *[F™] corresponds to the p-complete
module Z, (with generator x) where ¥q acts on « by 1, and ¥, acts on = by zero

for j > 1. The action of w;(¥) on O{m} = Z, - 2™ then follows from (62). O
Example C.15. For instance, it follows from that
\IIO = x@r,
(o
\Ill = L (1 — (m@m)p_l) ;
p
0y 21 1< i(P (p—1)(j+1)
Uy =2 [1-(20,)P ' = —= > (-1 (" ) (20,)P~ 10
p P J

Remark C.16. Using Corollary [C.4] a similar calculation can be used to describe
the G,-bundle G,/W|[F"] = F'W/pF"~! over BW[F"]; and, in particular, the
oo-category QCoh((G,/W[F"])/Gy,). Let us summarize this calculation as fol-
lows. Recall that G,/W[F] = G,/G¥ is isomorphic to GIF, so that if A; :=

Z,{x,0.}/([0x,2] = 1) is the Weyl algebra, then QCoh(G,/W[F]) ~ LModiﬁ‘nﬂp.
Similarly, if we write 0™ = 9™ (so that o™ (z*) = (F)a*k=m), define Al via

A =2, {2,008} ([0, ) = 01,

; k
Note that 9%~ is a p-adic unit multiple of Hi;o(&[ﬂp NP=1 Then, the action of
W[F"] on G, implies that there is an equivalence

j]—nilp.
] )

QCoh(G,/W[F™)) ~ LMod””,

n

this can be extended to an equivalence between QCoh((G./W[F"])/Gy,) and the
oo-category of graded A[ln]—modules such that 8g[cp " acts nilpotently for 0 < j <
n — 1, where x € A[ln] has weight 1 and 69[5) '] € .A[ln} has weight —p7. Algebras of
divided power differential operators such as A[ln] were initially studied by Berthelot
in [Ber96].

Warning C.17. Note that G,/W[F"] is not a ring stack. Indeed, the map
WIF"] — G, is not a quasi-ideal: the W-module structure on W[F"] does not
factor through W — W; = G, (if F"(z) = 0, then 2V (y) = V(F(x)y) need
not vanish). However, it does factor through W — W, (if F™(z) = 0, then
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xV"(y) = V*(F"(z)y) = 0); indeed, W,,/W[F"] &2 W/p™ admits the structure
of a ring stack.

Remark C.18. The proof of Corollary showed that there is an isomorphism
WXF"]) = WI[F"] X pipn

over F),. Let X be a smooth p-adic formal scheme over Z,,, and let X = X ®z, F,,.

Suppose that the Gf -action on ﬁg ®z, Fp = FX7*Q;(/FP refines to a W*[F"]-

action. (For instance, let (ﬁg )o denote the weight 0 piece of the Z/p-grading

on ﬁg inherited from the Gf -action. The datum of a refinement to a W*[F?]-
action leads to an operator on (ﬁfg )o which acts on grgénjﬁg by multiplication by
—i.) In this case, the Z/p-grading on Fx,*Q;(/Fp from [BL22al Remark 4.7.20]
would refine to a Z/p"-grading; this would imply a refinement of the Deligne-Illusie

theorem [DI87], stating that 7>_pn11Fx 0% 5 would be decomposable.

Remark C.19 (“Witty” interpretation of [Dev23b]). The work of [Lee22] sug-
gests that the base-change along BP(n — 1), — F, (even along BP(n —1). —

Z,) of the stack constructed from the associated graded of the motivic filtration
[ARW22] on THH(BP(n — 1))*%4/? (resp. THH(BP(n — 1))) is isomorphic to the
stack (G, /W*[F")) /Gy & BWX[F"] (vesp. (Go/W[F"]))/Gn = (FPW/pF™ 1) /Gyp).
Note that over F,,, the map W[F"] — G, factors as

WIE"] = WI[EF"|/V = apn — Gy,

which lets us identify G,/W[F"] = G x BFE,W[F™]. In topology, this cor-
responds to when j = 0 (i.e., JACH21l Proposition 2.9]). We are currently
investigating this and its consequences with Jeremy Hahn and Arpon Raksit. In
particular, this suggests that if a Z,-scheme “lifts to BP(n — 1)”, the G! -action

on ﬁg refines to a W*[F™]-action. From this perspective, the operators ¥; from
above are closely related to the topological Sen operators ©; from the body of this
article: roughly, ©; can be understood as w;_1 (¥).

Given Remark [C.I8] one is therefore naturally led to the following question: if
X is a smooth and proper F,-scheme which “lifts to BP(n — 1)” and dim(X) < p™,
does the Hodge-de Rham spectral sequence for X degenerate at the F1-page? This
question need not make sense, since BP(n — 1) is generally not an E.-ring [Law18|,
Senl7|. However, since BP(n — 1) admits the structure of an Es-ring, one can
nevertheless ask whether such a degeneration statement holds noncommutatively if
QCoh(X) admits a lift to a left BP{n — 1)-linear oo-category. This line of thinking
was motivation for the following result (see [Dev23b]): if QCoh(X) lifts to a left
BP(n — 1)-linear oco-category, and dim(X) < p”, then the Tate spectral sequence
for HP(X/F,) degenerates at the Es-page.
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