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Abstract. We investigate implications of an old conjecture in unstable homo-
topy theory related to the Cohen-Moore-Neisendorfer theorem and a conjec-

ture about the E2-topological Hochschild cohomology of certain Thom spectra

(denoted A, B, and T (n)) related to Ravenel’s X(pn). We show that these con-
jectures imply that the orientations MSpin → bo and MString → tmf admit

spectrum-level splittings. This is shown by generalizing a theorem of Hop-

kins and Mahowald, which constructs HFp as a Thom spectrum, to construct
BP⟨n− 1⟩, bo, and tmf as Thom spectra (albeit over T (n), A, and B respec-

tively, and not over the sphere). This interpretation of BP⟨n− 1⟩, bo, and

tmf offers a new perspective on Wood equivalences of the form bo∧Cη ≃ bu:
they are related to the existence of certain EHP sequences in unstable homo-

topy theory. This construction of BP⟨n− 1⟩ also provides a different lens on
the nilpotence theorem. Finally, we prove a C2-equivariant analogue of our

construction, describing HZ as a Thom spectrum.
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1. Introduction

1.1. Statement of the main results. One of the goals of this article is to
describe a program to prove the following old conjecture (studied, for instance, in
[Lau04, LS19], and discussed informally in many places, such as [MR09, Section
7]):

Conjecture 1.1.1. The Ando-Hopkins-Rezk orientation (see [AHR10]) MString →
tmf admits a spectrum-level splitting.

The key idea in our program is to provide a universal property for mapping out
of the spectrum tmf. We give a proof which is conditional on an old conjecture from
unstable homotopy theory stemming from the Cohen-Moore-Neisendorfer theorem
and a conjecture about the E2-topological Hochschild cohomology of certain Thom
spectra (the latter of which simplifies the proof of the nilpotence theorem from
[DHS88]). This universal property exhibits tmf as a certain Thom spectrum,
similarly to the Hopkins-Mahowald construction of HZp and HFp as Thom spectra.

To illustrate the gist of our argument in a simpler case, recall Thom’s clas-
sical result from [Tho54]: the unoriented cobordism spectrum MO is a wedge of
suspensions of HF2. The simplest way to do so is to show that MO is an HF2-
module, which in turn can be done by constructing an E2-map HF2 → MO. The
construction of such a map is supplied by the following theorem of Hopkins and
Mahowald:

Theorem (Hopkins-Mahowald; see [Mah79] and [MRS01, Lemma 3.3]). Let µ :
Ω2S3 → BO denote the real vector bundle over Ω2S3 induced by extending the map
S1 → BO classifying the Möbius bundle. Then the Thom spectrum of µ is equivalent
to HF2 as an E2-algebra.

Remark 1.1.2. The Thomification of the E2-map µ : Ω2S3 → BO produces the
desired E2-splitting HF2 → MO.

Our argument for Conjecture 1.1.1 takes this approach: we shall show that
an old conjecture from unstable homotopy theory and a conjecture about the E2-
topological Hochschild cohomology of certain Thom spectra provide a construction
of tmf (as well as bo and BP⟨n⟩) as a Thom spectrum, and utilize the resulting
universal property of tmf to construct an (unstructured) map tmf → MString.

Mahowald was the first to consider the question of constructing spectra like
bo and tmf as Thom spectra (see [Mah87]). Later work by Rudyak in [Rud98]
sharpened Mahowald’s results to show that bo and bu cannot appear as the Thom
spectrum of a p-complete spherical fibration. In [AHL09], Angeltveit-Hill-Lawson
gave an alternative proof of this fact under the assumption that the p-complete
spherical fibration is classified by a map of E3-spaces. Recently, Chatham has
shown in [Cha19] that tmf∧2 cannot appear as the Thom spectrum of a structured
2-complete spherical fibration over a loop space. Our goal is to argue that these
issues are alleviated if we replace “spherical fibrations” with “bundles of R-lines”
for certain well-behaved spectra R.

The first hint of tmf being a generalized Thom spectrum comes from a conjec-
ture of Hopkins and Hahn regarding a construction of the truncated Brown-Peterson
spectra BP⟨n⟩ as Thom spectra. To state this conjecture, we need to recall some
definitions. Recall (see [DHS88]) that X(n) denotes the Thom spectrum of the
map ΩSU(n) → ΩSU ≃ BU. Upon completion at a prime p, the spectra X(k)
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for pn ≤ k ≤ pn+1 − 1 split as a direct sum of suspensions of certain homotopy
commutative ring spectra T (n), which in turn filter the gap between the p-complete
sphere spectrum and BP (in the sense that T (0) = S and T (∞) = BP). Then:

Conjecture 1.1.3 (Hahn, Hopkins; unpublished). There is a map f : Ω2S|vn|+3 →
BGL1(T (n)), which detects an indecomposable element vn ∈ π|vn|T (n) on the bot-
tom cell of the source, whose Thom spectrum is a form of BP⟨n− 1⟩.

The primary obstruction to proving that a map f as in Conjecture 1.1.3 exists
stems from the failure of T (n) to be an E3-ring (due to Lawson; [Law20, Example
1.5.31]). If R is an E1- or E2-ring spectrum, let Z3(R) denote the E2-topological
Hochschild cohomology of R (see Definition 3.3.2). Hahn suggested that one way to
get past the failure of T (n) to be an E3-ring would be via the following conjecture:

Conjecture 1.1.4 (Hahn). There is an indecomposable element vn ∈ π|vn|T (n)
which lifts to the E2-topological Hochschild cohomology Z3(X(pn)) of X(pn).

We do not know how to prove this conjecture (and have no opinion on whether
or not it is true). We shall instead show that Conjecture 1.1.3 is implied by the
two conjectures alluded to above. We shall momentarily state these conjectures
precisely as Conjectures D and E; let us first state our main results.

We need to introduce some notation. Let y(n) (resp. yZ(n)) denote the
Mahowald-Ravenel-Shick spectrum, constructed as a Thom spectrum over ΩJpn−1(S

2)
(resp. ΩJpn−1(S

2)⟨2⟩) introduced in [MRS01] to study the telescope conjecture
(resp. in [AQ19] as z(n)). Let A denote the E1-quotient S//ν of the sphere
spectrum by ν ∈ π3(S); its mod 2 homology is H∗(A) ∼= F2[ζ

4
1 ]. The spectrum

A has been intensely studied by Mahowald and his coauthors in (for instance)
[Mah79, DM81, Mah81b, Mah81a, Mah82, MU77], where it is often denoted
X5. (See Remark 2.1.8 for motivation for the term “E1-quotient”.) Let B denote
the E1-ring introduced in [Dev19b, Construction 3.1]; it has been briefly studied
under the name X in [HM02]. It may be constructed as the Thom spectrum of a
vector bundle over an E1-space N which sits in a fiber sequence ΩS9 → N → ΩS13.
The mod 2 homology of B is H∗(B) ∼= F2[ζ

8
1 , ζ

4
2 ].

We also need to recall some unstable homotopy theory. In [CMN79a, CMN79b,
Nei81], Cohen, Moore, and Neisendorfer constructed a map ϕn : Ω2S2n+1 → S2n−1

whose composite with the double suspension E2 : S2n−1 → Ω2S2n+1 is the degree p
map. (The symbol E stands for “Einhängung”, which is German for “suspension”.)
Such a map was also constructed by Gray in [Gra89b, Gra88]. In Section 4.1, we
introduce the related notion of a charming map (Definition 4.1.1), one example of
which is the Cohen-Moore-Neisendorfer map.

Our main result is then:

Theorem A. Suppose R is a base spectrum of height n as in the second line of Table

1. Let Kn+1 denote the fiber of a charming map Ω2S2pn+1+1 → S2pn+1−1. Then
Conjectures D and E imply that there is a map µ : Kn+1 → BGL1(R) such that the
mod p homology of the Thom spectrum Kµ

n+1 is isomorphic to the mod p homology

of the associated designer chromatic spectrum Θ(R) as a Steenrod comodule1.
If R is any base spectrum other than B, the Thom spectrum Kµ

n+1 is equivalent
to Θ(R) upon p-completion for every prime p. If Conjecture F is true, then the

1We elected to use the symbol Θ because the first two letters of the English spelling of Θ
and of Thom’s name agree.
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same is true for B: the Thom spectrum Kµ
n+1 is equivalent to Θ(B) = tmf upon

2-completion.

Height 0 1 2 n n n
Base spectrum R S∧p A B T (n) y(n) yZ(n)

Designer chromatic spectrum Θ(R) HZp bo tmf BP⟨n⟩ k(n) kZ(n)

Table 1. To go from a base spectrum “of height n”, say R, in the
second line to the third, one takes the Thom spectrum of a bundle
of R-lines over Kn+1.

Making sense of Theorem A relies on knowing that T (n) admits the structure
of an E1-ring; this is proved in [BL21]; see also Warning 3.1.6. Note that the
spectra A, B, y(n), and yZ(n) all admit E1-structures by construction. In Remark
5.4.7, we sketch how Theorem A relates to the proof of the nilpotence theorem.

Although the form of Theorem A does not resemble Conjecture 1.1.3, we show
that Theorem A implies the following result.

Corollary B. Conjectures D and E imply Conjecture 1.1.3.

In the case n = 0, Corollary B recovers the Hopkins-Mahowald theorem con-
structing HFp. Moreover, Corollary B is true unconditionally when n = 0, 1.

Using the resulting universal property of tmf, we obtain a result pertaining to
Conjecture 1.1.1.

Theorem C. Assume that the composite Z3(B) → B → MString is an E3-map.
Then Conjectures D, E, and F imply that there is a spectrum-level unital splitting
of the Ando-Hopkins-Rezk orientation MString(2) → tmf(2).

In particular, Conjecture 1.1.1 follows (at least after localizing at p = 2; a
slight modification of our arguments should work at any prime). We believe that
the assumption that the composite Z3(B) → B → MString is an E3-map is too
strong: we believe that it can be removed using special properties of fibers of
charming maps, and we will return to this in future work.

We stress that these splittings are unstructured; it seems unlikely that they
can be refined to structured splittings. In [Dev19b], we showed (unconditionally)
that the Ando-Hopkins-Rezk orientation MString → tmf induces a surjection on
homotopy, a result which is clearly implied by Theorem C.

We remark that the argument used to prove Theorem C shows that if the
composite Z3(A) → A → MSpin is an E3-map, then Conjectures D and E imply
that there is a spectrum-level unital splitting of the Atiyah-Bott-Shapiro orientation
MSpin → bo. This splitting was originally proved unconditionally (i.e., without
assuming Conjecture D or Conjecture E) by Anderson-Brown-Peterson in [ABP67]
via a calculation with the Adams spectral sequence.

1.2. The statements of Conjectures D, E, and F. We first state Conjec-
ture D. The second part of this conjecture is a compilation of several old conjectures
in unstable homotopy theory originally made by Cohen-Moore-Neisendorfer, Gray,
and Selick in [CMN79a, CMN79b, Nei81, Gra89b, Gra88, Sel77]. The state-
ment we shall give momentarily differs slightly from the statements made in the
literature: for instance, in Conjecture D(b), we demand a Q1-space splitting (No-
tation 2.2.6), rather than merely an H-space splitting.
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Conjecture D. The following statements are true:

(a) The homotopy fiber of any charming map (Definition 4.1.1) is equivalent
as a loop space to the loop space on an Anick space (Definition 4.1.3).

(b) There exists a p-local charming map f : Ω2S2pn+1 → S2pn−1 whose ho-
motopy fiber admits a Q1-space retraction off of Ω2(S2pn

/p). There are
also integrally defined maps Ω2S9 → S7 and Ω2S17 → S15 whose compos-
ites with the double suspension on S7 and S15 respectively are the degree
2 maps. Moreover, their homotopy fibers K2 and K3 (respectively) admit
deloopings, and admit Q1-space retractions off Ω2(S8/2) and Ω2(S16/2)
(respectively).

Next, we turn to Conjecture E. This conjecture is concerned with the E2-
topological Hochschild cohomology of the Thom spectra X(pn − 1)(p), A, and B
introduced above.

Conjecture E. Let n ≥ 0 be an integer. Let R denote X(pn+1−1)(p), A (in which
case n = 1), or B (in which case n = 2). Then the element σn ∈ π|vn|−1R lifts to
the E2-topological Hochschild cohomology Z3(R) of R, and is p-torsion in π∗Z3(R)
if R = X(pn+1 − 1)(p), and is 2-torsion in π∗Z3(R) if R = A or B.

Finally, we state Conjecture F. It is inspired by [AP76, AL17]. We believe
this conjecture is the most approachable of the conjectures stated here.

Conjecture F. Suppose X is a spectrum which is bounded below and whose homo-
topy groups are finitely generated over Zp. If there is an isomorphism H∗(X;Fp) ∼=
H∗(tmf;Fp) of Steenrod comodules, then there is a homotopy equivalence X∧

p →
tmf∧p of spectra.

After proving Theorem A and Theorem C, we explore relationships between the
different spectra appearing on the second line of Table 1 in the remainder of the
article. In particular, we prove analogues of Wood’s equivalence bo∧Cη ≃ bu (see
also [Mat16]) for these spectra. We argue that these are related to the existence
of certain EHP sequences.

Finally, we describe a C2-equivariant analogue of Corollary B at n = 1 as
Theorem 7.2.1, independently of a C2-equivariant analogue of Conjecture D and
Conjecture E. This result constructs HZ as a Thom spectrum of an equivariant
bundle of invertible T (1)R-modules over ΩρS2ρ+1, where T (1)R is the free Eσ-
algebra with a nullhomotopy of the equivariant Hopf map η̃ ∈ πσ(S), and ρ and
σ are the regular and sign representations of C2, respectively. This uses results of
Behrens-Wilson and Hahn-Wilson from [BW18, HW20]. We believe there is a
similar result at odd primes, but we defer discussion of this. We discuss why our
methods do not work to yield BP⟨n⟩R for n ≥ 1 as in Corollary B.

1.3. Outline. Section 2 contains a review some of the theory of Thom spectra
from the modern perspective, as well as the proof of the classical Hopkins-Mahowald
theorem. The content reviewed in this section will appear in various guises through-
out this project, hence its inclusion.

In Section 3, we study certain E1-rings; most of them appear as Thom spectra
over the sphere. For instance, we recall some facts about Ravenel’s X(n) spectra,
and then define and prove properties about the E1-rings A and B used in the
statement of Theorem A. We state Conjecture E, and discuss (Remark 5.4.7) its
relation to the nilpotence theorem, in this section.
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In Section 4, we recall some unstable homotopy theory, such as the Cohen-
Moore-Neisendorfer map and the fiber of the double suspension. These concepts do
not show up often in stable homotopy theory, so we hope this section provides useful
background to the reader. We state Conjecture D, and then explore properties of
Thom spectra of bundles defined over Anick spaces.

In Section 5, we state and prove Theorem A and Corollary B, and state several
easy consequences of Theorem A.

In Section 6, we study some applications of Theorem A. For instance, we use
it to prove Theorem C, which is concerned with the splitting of certain cobordism
spectra. In a previous version of this article, we had two subsections discussing
Wood-like equivalences, and topological Hochschild homology of the chromatic
Thom spectra of Table 1. However, while making revisions to this article, we
decided to split these two sections off into separate articles [Dev22a, Dev22b].

In Section 7, we prove an equivariant analogue of Corollary B at height 1. We
construct equivariant analogues of X(n) and A, and describe why our methods fail
to produce an equivariant analogue of Corollary B at all heights, even granting an
analogue of Conjecture D and Conjecture E.

Finally, in Section 8, we suggest some directions for future research. There are
also numerous interesting questions arising from our work, which we have indicated
in the body of the article.

Conventions. Unless indicated otherwise, or if it goes against conventional
notational choices, a Latin letter with a numerical subscript (such as x5) denotes
an element of degree given by its subscript. If X is a space and R is an E1-ring
spectrum, then Xµ will denote the Thom spectrum of some bundle of invertible R-
modules determined by a map µ : X → BGL1(R). We shall often quietly localize or
complete at an implicit prime p. Although we have tried to be careful, all limits and
colimits will be homotopy limits and colimits; we apologize for any inconvenience
this might cause.

We shall denote by P k(p) the mod p Moore space Sk−1 ∪p ek with top cell
in dimension k. The symbols ζi and τi will denote the conjugates of the Milnor
generators (commonly written nowadays as ξi and τi, although, as Haynes Miller
pointed out to me, our notation for the conjugates was Milnor’s original notation)
in degrees 2(pi−1) and 2pi−1 for p > 2 and 2i−1 (for ζi) at p = 2. Unfortunately,
we will use A to denote the E1-ring in appearing in Table 1, and write A∗ to denote
the dual Steenrod algebra. We hope this does not cause any confusion, since we
will always denote the homotopy groups of A by π∗A and not A∗.

If O is an operad, we will simply write O-ring to denote an O-algebra object
in spectra. A map of O-rings respecting the O-algebra structure will often simply
be called a O-map. Unless it is clear that we mean otherwise, all modules over
non-E∞-algebras will be left modules.

Hood Chatham pointed out to me that S3⟨4⟩ would be the correct notation for
what we denote by S3⟨3⟩ = fib(S3 → K(Z, 3)). Unfortunately, the literature seems
to have chosen S3⟨3⟩ as the preferred notation, so we stick to that in this project.

When we write that Theorem A, Corollary B, or Theorem C implies a statement
P, we mean that Conjectures D and Conjecture E (and Conjecture F, if the intended
application is to tmf) imply P via Theorem A, Corollary B, or Theorem C.
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2. Background, and some classical positive and negative results

2.1. Background on Thom spectra. In this section, we will recall some
facts about Thom spectra and their universal properties; the discussion is motivated
by [ABG+14].

Definition 2.1.1. Let A be an E1-ring, and let µ : X → BGL1(A) be a map of
spaces. The Thom A-module Xµ is defined as the homotopy pushout

Σ∞
+ GL1(A) //

��

Σ∞
+ fib(µ)

��
A // Xµ.

Remark 2.1.2. Let A be an E1-ring, and let µ : X → BGL1(A) be a map of

spaces. The Thom A-module Xµ is the homotopy colimit of the functor X
µ−→

BGL1(A) → Mod(A), where we have abused notation by identifying X with its
associated Kan complex. If A is an E1-R-algebra, then the R-module underlying
X can be identified with the homotopy colimit of the composite functor

X
µ−→ BGL1(A) → BAutR(A) → Mod(R),

where we have identified X with its associated Kan complex. The space BAutR(A)
can be regarded as the maximal subgroupoid of Mod(R) spanned by the object A.

The following is immediate from the description of the Thom spectrum as a
Kan extension:

Proposition 2.1.3. Let R and R′ be E1-rings with an E1-ring map R → R′

exhibiting R′ as a right R-module. If f : X → BGL1(R) is a map of spaces, then
the Thom spectrum of the composite X → BGL1(R) → BGL1(R

′) is the base-change
Xf ∧R R′ of the (left) R-module Thom spectrum Xf .

Corollary 2.1.4. Let R and R′ be E1-rings with an E1-ring map R → R′ exhibiting
R′ as a right R-module. If f : X → BGL1(R) is a map of spaces such that the
the composite X → BGL1(R) → BGL1(R

′) is null, then there is an equivalence
Xf ∧R R′ ≃ R′ ∧ Σ∞

+ X.

Moreover (see e.g. [AB19, Corollary 3.2]):

Proposition 2.1.5. Let X be a k-fold loop space, and let R be an Ek+1-ring. Then
the Thom spectrum of an Ek-map X → BGL1(R) is an Ek-R-algebra.

We will repeatedly use the following classical result, which is again a conse-
quence of the observation that Thom spectra are colimits, as well as the fact that
total spaces of fibrations may be expressed as colimits; see also [Bea17, Theorem
1].

Proposition 2.1.6. Let X
i−→ Y → Z be a fiber sequence of k-fold loop spaces

(where k ≥ 1), and let R be an Em-ring for m ≥ k + 1. Suppose that µ : Y →
BGL1(R) is a map of k-fold loop spaces. Then, there is a k-fold loop map ϕ : Z →
BGL1(X

µ◦i) whose Thom spectrum is equivalent to Y µ as Ek−1-rings. Concisely,
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if arrows are labeled by their associated Thom spectra, then there is a diagram

X
i //

Xµ◦i
$$

Y //

µ Y µ

��

Z

ϕ Y µ=Zϕ

��
BGL1(R) // BGL1(X

µ◦i).

The argument to prove Proposition 2.1.6 also goes through with slight modifi-
cations when k = 0, and shows:

Proposition. Let X
i−→ Y → Z be a fiber sequence of spaces with Z connected, and

let R be an Em-ring for m ≥ 1. Suppose that µ : Y → BGL1(R) is a map of Kan
complexes. Then, there is a map ϕ : Z → BAutR(X

µ◦i) such that the homotopy
colimit (i.e., “Thom spectrum”) Zϕ of the following composite is equivalent to Y µ

as an R-module:

(2.1) Z
ϕ−→ BAutR(X

µ◦i) ⊆ ModR.

We will abusively refer to this result in the sequel also as Proposition 2.1.6.

Proof of the second form of Proposition 2.1.6. It will be convenient
to use the model for Thom spectra following [ABG+14]. Observe that a fibration
X → Y → Z implies (e.g., by [ABG+14, Remark 2.4]) that there is a functor
Z → Top whose homotopy colimit is Y , and whose fiber over any vertex of z ∈ Z
is X. Since X is connected, we may write Y ≃ hocolimZ X. The map X → Y is
induced by the inclusion {z} ↪→ Z. Since Y is a Kan complex, the Thom spectrum
Y µ can be identified (by [ABG+14, Definition 1.4]) with the homotopy colimit

of the composite Y
µ−→ BGL1(R) ≃ R-line ⊆ ModR (which we will temporarily

denote by µ : Y → ModR). We will write this as Y µ ≃ hocolimY R. The left Kan
extension of the map Y → Z along the functor µ : Y → ModR defines a functor

ϕ : Z → ModR, which sends z ∈ Z to Xµ◦i ≃ hocolim(X → Y
µ−→ ModR). Since

Z is connected, this implies that Y µ ≃ hocolimY R is the homotopy colimit of the
functor (2.1). □

The following is a slight generalization of [AB19, Theorem 4.10]:

Theorem 2.1.7. Let R be an Ek+1-ring for k ≥ 0, and let α : Y → BGL1(R) be
a map from a pointed space Y . For any 0 ≤ m ≤ k, let α̃ : ΩmΣmY → BGL1(R)
denote the extension of α. Then the Thom spectrum (ΩmΣmY )α̃ is the free Em-
R-algebra A for which the composite Y → BGL1(R) → BGL1(A) is null. More
precisely, if A is any Em-R-algebra, then

MapAlgEm
R

((ΩmΣmY )α̃, A) ≃

{
Map∗(Y,Ω

∞A) if α : Y → BGL1(R) → BGL1(A) is null,

∅ else.

Remark 2.1.8. Say Y = Sn+1, so α detects an element α ∈ πnR. Theorem
2.1.7 suggests interpreting the Thom spectrum (ΩmSm+n+1)α̃ as an Em-quotient;
to signify this, we will denote it by R//Emα. If m = 1, then we will simply denote
it by R//α, while if m = 0, then the Em-quotient is simply the ordinary quotient
R/α. See [AB19, Definition 4.3], where the quotient R//Em

α is called the versal
R-algebra of characteristic α.
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2.2. The Hopkins-Mahowald theorem. The primary motivation for this
project is the following miracle (see [Mah79] for p = 2 and [MRS01, Lemma 3.3]
for p > 2, as well as [AB19, Theorem 5.1] for a proof of the equivalence as one of
E2-algebras):

Theorem 2.2.1 (Hopkins-Mahowald). Let S∧p be the p-completion of the sphere at a

prime p, and let f : S1 → BGL1(S∧p ) detect the element 1−p ∈ π1BGL1(S∧p ) ≃ Z×
p .

Let µ : Ω2S3 → BGL1(S∧p ) denote the E2-map extending f ; then there is a p-

complete equivalence (Ω2S3)µ → HFp of E2-ring spectra.

It is not too hard to deduce the following result from Theorem 2.2.1:

Corollary 2.2.2. Let S3⟨3⟩ denote the 3-connected cover of S3. Then the Thom

spectrum of the composite Ω2S3⟨3⟩ → Ω2S3 µ−→ BGL1(S∧p ) is equivalent to HZp as
an E2-ring.

Remark 2.2.3. Theorem 2.2.1 implies a restrictive version of the nilpotence the-
orem: if R is an E2-ring spectrum, and x ∈ π∗R is a simple p-torsion element
which has trivial HFp-Hurewicz image, then x is nilpotent. This is explained in
[MNN15, Proposition 4.19]. Indeed, to show that x is nilpotent, it suffices to show
that the localization R[1/x] is contractible. Since px = 0, the localization R[1/x] is
an E2-ring in which p = 0, so the universal property of Theorem 2.1.7 implies that
there is an E2-map HFp → R[1/x]. It follows that the unit R → R[1/x] factors
through the Hurewicz map R → R ∧ HFp. In particular, the multiplication by x
map on R[1/x] factors as the indicated dotted map:

Σ|x|R

��

x // R //

��

R[1/x].

HFp ∧ Σ|x|R
x // R ∧HFp

99

However, the bottom map is null (because x has trivial HFp-Hurewicz image), so
x must be null in π∗R[1/x]. This is possible if and only if R[1/x] is contractible,
as desired. See Proposition 5.4.1 for the analogous connection between Corollary
2.2.2 and nilpotence.

Since an argument similar to the proof of Theorem 2.2.1 will be necessary later
in Step 2 of Section 5.2, we will recall a proof of this theorem. The key non-formal
input is the following result of Steinberger’s from [BMMS86, Theorems III.2.2 and
III.2.3]:

Theorem 2.2.4 (Steinberger). Let ζi denote the conjugate to the Milnor generators
ξi of the dual Steenrod algebra, and similarly for τi at odd primes. Then

(2.2) Qpi

ζi = ζi+1, Qpj

τj = τj+1

for i, j + 1 > 0.

Proof of Theorem 2.2.1. By Corollary 2.1.7, the Thom spectrum (Ω2S3)µ

is the free E2-ring with a nullhomotopy of p. Since HFp is an E2-ring with a
nullhomotopy of p, we obtain an E2-map (Ω2S3)µ → HFp. To prove that this map
is a p-complete equivalence, it suffices to prove that it induces an isomorphism on
mod p homology.
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The mod p homology of (Ω2S3)µ can be calculated directly via the Thom
isomorphism HFp∧(Ω2S3)µ ≃ HFp∧Σ∞

+ Ω2S3. Note that this is not an equivalence
as HFp ∧HFp-comodules: the Thom twisting is highly nontrivial.

For simplicity, we will now specialize to the case p = 2, although the same proof
works at odd primes. The homology of Ω2S3 is classical: it is a polynomial ring
generated by applying E2-Dyer-Lashof operations to a single generator x1 in degree
1. Theorem 2.2.4 implies that the same is true for the mod 2 Steenrod algebra: it,
too, is a polynomial ring generated by applying E2-Dyer-Lashof operations to the
single generator ζ1 = ξ1 in degree 1. Since the map (Ω2S3)µ → HF2 is an E2-ring
map, it preserves E2-Dyer-Lashof operations on mod p homology. By the above
discussion, it suffices to show that the generator x1 ∈ H∗(Ω

2S3)µ ∼= H∗(Ω
2S3) in

degree 1 is mapped to ζ1 ∈ H∗HF2.
To prove this, note that x1 is the image of the generator in degree 1 in homology

under the double suspension S1 → Ω2S3, and that ζ1 is the image of the generator in
degree 1 in homology under the canonical map S/p → HFp. It therefore suffices to
show that the Thom spectrum of the spherical fibration S1 → BGL1(S∧p ) detecting
1− p is simply S/p. This is an easy exercise. □

Remark 2.2.5. When p = 2, one does not need to p-complete in Theorem 2.2.1:
the map S1 → BGL1(S∧2 ) factors as S1 → BO → BGL1(S), where the first map
detects the Möbius bundle over S1, and the second map is the J-homomorphism.

Notation 2.2.6. Let Q1 denote the (operadic nerve of the) cup-1 operad from
[Law20, Example 1.3.6]: this is the operad whose nth space is empty unless n = 2,
in which case it is S1 with the antipodal action of Σ2. We will need to slightly
modify the definition of Q1 when localized at an odd prime p: in this case, it will
denote the operad whose nth space is a point if n < p, empty if n > p, and when
n = p is the ordered configuration space Confp(R

2) with the permutation action
of Σp. Any homotopy commutative ring admits the structure of a Q1-algebra at
p = 2, but at other primes it is slightly stronger to be a Q1-algebra than to be a
homotopy commutative ring. If k ≥ 2, any Ek-algebra structure on a spectrum
restricts to a Q1-algebra structure.

Remark 2.2.7. As stated in [Law20, Proposition 1.5.29], the operationQ1 already
exists in the mod 2 homology of any Q1-ring R, where Q1 is the cup-1 operad from
Notation 2.2.6 — the entire E2-structure is not necessary. With our modification
of Q1 at odd primes as in Remark 2.2.6, this is also true at odd primes.

Remark 2.2.8. We will again momentarily specialize to p = 2 for convenience.
Steinberger’s calculation in Theorem 2.2.4 can be rephrased as stating that Q1ζi =
ζi+1, where Q1 is the lower-indexed Dyer-Lashof operation. (See [BMMS86, Page
59] for this notation.) As in Remark 2.2.7, the operation Q1 already exists in
the mod p homology of any Q1-ring R. Since homotopy commutative rings are
Q1-algebras in spectra, this observation can be used to prove results of Würgler
([Wur86, Theorem 1.1]) and Pazhitnov-Rudyak ([PR84, Theorem in Introduc-
tion]).

Remark 2.2.9. The argument with Dyer-Lashof operations and Theorem 2.2.4
used in the proof of Theorem 2.2.1 will be referred to as the Dyer-Lashof hopping
argument. It will be used again (in the same manner) in the proof of Theorem A.
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Remark 2.2.10. Theorem 2.2.1 is equivalent to Steinberger’s calculation (Theorem
2.2.4), as well as to Bökstedt’s calculation of THH(Fp) (as a ring spectrum, and not
just the calculation of its homotopy). Let us sketch an argument. First, Theorem
2.2.4 implies Theorem 2.2.1 (by the proof above). The other direction (i.e., the
calculation (2.2)) can be argued by observing that the Thom isomorphism HFp ∧
HFp ≃ HFp ∧ Σ∞

+ Ω2S3 is an equivalence of E2-HFp-algebras, so that the Dyer-
Lashof operations are determined by the operations in H∗(Ω

2S3;Fp). But the
Dyer-Lashof operations are defined by classes in H∗(Ω

2S3;Fp), and Theorem 2.2.4
is a consequence of the fact that the iterates of Q1 on the generator of H1(Ω

2S3;Fp)
describe all the polynomial generators H∗(Ω

2S3;Fp).
It remains to argue that Theorem 2.2.1 is equivalent to the calculation that

THH(Fp) ≃ Fp[ΩS
3] as an E1-Fp-algebra. This is showed in [KN19, Remark 1.5].

2.3. No-go theorems for higher chromatic heights. In light of Theorem
2.2.1 and Corollary 2.2.2, it is natural to wonder if appropriate higher chromatic
analogues of HFp and HZ, such as BP⟨n⟩, bo, or tmf can be realized as Thom
spectra of spherical fibrations. The answer is known to be negative (see [Mah87,
Rud98, Cha19]) in many cases:

Theorem 2.3.1 (Mahowald, Rudyak, Chatham). There is no space X with a
spherical fibration µ : X → BGL1(S) (even after completion) such that Xµ is
equivalent to BP⟨1⟩ or bo. Moreover, there is no 2-local loop space X ′ with a
spherical fibration determined by an H-map µ : X ′ → BGL1(S∧2 ) such that X ′µ is
equivalent to tmf∧2 .

The proofs rely on calculations in the unstable homotopy groups of spheres.

Remark 2.3.2. Although not written down anywhere, a slight modification of
the argument used by Mahowald to show that bu is not the Thom spectrum of a
spherical fibration over a loop space classified by an H-map can be used to show
that BP⟨2⟩ at p = 2 (i.e., tmf1(3)) is not the Thom spectrum of a spherical fibration
over a loop space classified by an H-map. We do not know a proof that BP⟨n⟩ is
not the Thom spectrum of a spherical fibration over a loop space classified by an
H-map for all n ≥ 1 and all primes, but we strongly suspect this to be true.

Remark 2.3.3. A lesser-known no-go result due to Priddy appears in [Lew78,
Chapter 2.11], where it is shown that BP cannot appear as the Thom spectrum
of a double loop map Ω2X → BGL1(S). In fact, the argument shows that the
same result is true with BP replaced by BP⟨n⟩ for n ≥ 1; we had independently
come up with this argument for BP⟨1⟩ before learning about Priddy’s argument.
Since Lewis’ thesis is not particularly easy to acquire, we give a sketch of Priddy’s
argument. By the Thom isomorphism and the calculation (see [LN14, Theorem
4.3], as well as [Wil75, Proposition 1.7] and [AR05, Proposition 5.3]):

H∗(BP⟨n− 1⟩;Fp) ∼=

{
F2[ζ

2
1 , · · · , ζ2n−1, ζ

2
n, ζn+1, · · · ] p = 2,

Fp[ζ1, ζ2, · · · ]⊗ ΛFp
(τn, τn+1, · · · ) p > 2,

we find that the mod p homology of Ω2X would be isomorphic as an algebra to a
polynomial ring on infinitely many generators, possibly tensored with an exterior
algebra on infinitely many generators. The Eilenberg-Moore spectral sequence then
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implies that the mod p cohomology of X is given by

H∗(X;Fp) ∼=

{
F2[b1, · · · , bn, cn+1, · · · ] p = 2,

Fp[b1, b2, · · · ]⊗ ΛFp(cn+1, · · · ) p > 2,

where |bi| = 2pi and |ci| = 2pi−1 + 1. If p is odd, then since |b1| = 2p, we
have Pp(b1) = bp1. Liulevicius’ formula for P1 in terms of secondary cohomology
operations ([Liu62, Theorem 1]) allows us to write Pp(b1) as a sum c0R(b1) +∑

γ c0,γΓγ(b1), where R(b1) is a coset in H2p+4(p−1)(X;Fp) and Γγ is an operation

of odd degree, so that Γγ(b1) is in odd degree. We will not need to know what
exactly the sum is indexed by, or what any of these operations are. Observe that
Γγ kills b1 because everything is concentrated in even degrees in the relevant range,
and R also kills b1 since |R(b1)| = 4(p−1)+2pi is never a sum of numbers of the form
2pk when p > 2. Using this, one can conclude that bp1 = 0, which is a contradiction.
A similar calculation works at p = 2, using Adams’ study of secondary mod 2
cohomology operations in [Ada60].

Remark 2.3.4. Using the calculations of THH(bo) and THH(ku) from [AHL10],
Angeltveit-Hill-Lawson show in [AHL09] that neither bo not ku can appear as the
Thom spectrum of a double loop map Ω2X → BGL1(S).

Our primary goal in this project is to argue that the issues in Theorem 2.3.1
are alleviated if we replace BGL1(S) with the delooping of the space of units of an
appropriate replacement of S. In the next section, we will construct these replace-
ments of S.
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3. Some Thom spectra

In this section, we introduce certain E1-rings; most of them appear as Thom
spectra over the sphere. The following table summarizes the spectra introduced in
this section and gives references to their locations in the text. The spectra A and
B were introduced in [Dev19b].

Thom spectrum Definition “Height” BP-homology
T (n) Theorem 3.1.5 n Theorem 3.1.5

y(n) and yZ(n) Definition 3.2.2 n Proposition 3.2.3
A Definition 3.2.8 1 Proposition 3.2.13
B Definition 3.2.18 2 Proposition 3.2.21

Table 2. Certain Thom spectra and their homologies.

3.1. Ravenel’s X(n) spectra. The proof of the nilpotence theorem in [DHS88,
HS98] crucially relied upon certain Thom spectra arising from Bott periodicity;
these spectra first appeared in Ravenel’s seminal paper [Rav84].

Definition 3.1.1. Let X(n) denote the Thom spectrum of the E2-map ΩSU(n) ⊆
BU

J−→ BGL1(S), where the first map arises from Bott periodicity.

Example 3.1.2. The E2-ring X(1) is the sphere spectrum, while X(∞) is MU.
Since the map ΩSU(n) → BU is an equivalence in dimensions ≤ 2n − 2, the same
is true for the map X(n) → MU; the first dimension in which X(n) has an element
in its homotopy which is not detected by MU is 2n− 1.

Remark 3.1.3. The E2-structure on X(n) does not extend to an E3-structure
(see [Law20, Example 1.5.31]). If X(n) admits such an E3-structure, then the
induced map H∗(X(n)) → H∗(HFp) on mod p homology would commute with
E3-Dyer-Lashof operations. However, we know that the image of H∗(X(n)) in
H∗(HFp) is Fp[ζ

2
1 , · · · , ζ2n]; since Steinberger’s calculation (Theorem 2.2.4) implies

that Q2(ζ
2
i ) = ζ2i+1 via the relation Q2(x

2) = Q1(x)
2, we find that the image of

H∗(X(n)) in H∗(HFp) cannot be closed under the E3-Dyer-Lashof operation Q2.

Remark 3.1.4. The proof of the nilpotence theorem shows that each of the X(n)
detects nilpotence. However, it is known (see [Rav84, Theorem 3.1]) that ⟨X(n)⟩ >
⟨X(n+ 1)⟩.

After localizing at a prime p, the spectrum MU splits as a wedge of suspensions
of BP; this splitting comes from the Quillen idempotent on MU. The same is true
of the X(n) spectra, as explained in [Rav86, Section 6.5]: a multiplicative map
X(n)(p) → X(n)(p) is determined by a polynomial f(x) =

∑
0≤i≤n−1 aix

i+1, with

a0 = 1 and ai ∈ π2i(X(n)(p)). One can use this to define a truncated form of the
Quillen idempotent ϵn on X(n)(p) (see [Hop84, Proposition 1.3.7]), and thereby
obtain a summand of X(n)(p). We summarize the necessary results in the following
theorem.

Theorem 3.1.5. Let n be such that pn ≤ k ≤ pn+1 − 1. Then X(k)(p) splits as a
wedge of suspensions of the spectrum T (n) = ϵpn ·X(pn)(p).

• The map T (n) → BP is an equivalence in dimensions ≤ |vn+1| − 2, so
there is an indecomposable element vi ∈ π∗T (n) which maps to an inde-
composable element in π∗BP for 0 ≤ i ≤ n.
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• This map induces the inclusion BP∗T (n) = BP∗[t1, · · · , tn] ⊆ BP∗(BP)
on BP-homology, and the inclusions F2[ζ

2
1 , · · · , ζ2n] ⊆ F2[ζ

2
1 , ζ

2
2 , · · · ] and

Fp[ζ1, · · · , ζn] ⊆ F2[ζ1, ζ2, · · · ] on mod 2 and mod p homology.
• T (n) is a homotopy associative and Q1-algebra spectrum.

Remark 3.1.6. It is known that that T (n) admits the structure of an E1-ring (see
[BL21, Section 7.5]). We will interpret the phrase “Thom spectrum Xµ of a map

µ : X → BGL1(T (n))” where µ arises via a map X
µ0−→ BGL1(X(pn+1 − 1)) to

mean the base-change Xµ0 ∧X(pn+1−1) T (n).

It is believed that T (n) in fact admits more structure (see [AQ21, Section 6]
for some discussion):

Conjecture 3.1.7. The Q1-ring structure on T (n) extends to an E2-ring structure.

Remark 3.1.8. This is true at p = 2 and n = 1. Indeed, in this case T (1) = X(2) is
the Thom spectrum of the bundle given by the 2-fold loop map ΩS3 = Ω2BSU(2) →
BU, induced by the inclusion BSU(2) → B3U = BSU.

Remark 3.1.9. Conjecture 3.1.7 is true at p = 2 and n = 2. The Stiefel manifold
V2(H

2) sits in a fiber sequence

S3 → V2(H
2) → S7.

There is an equivalence V2(H
2) ≃ Sp(2), so ΩV2(H

2) admits the structure of a
double loop space. There is an E2-map µ : ΩV2(H

2) → BU, given by taking double
loops of the composite

BSp(2) → BSU(4) → BSU ≃ B3U.

The map µ admits a description as the left vertical map in the following map of
fiber sequences:

ΩV2(H
2) //

µ

��

ΩS7 //

��

S3

��
BU // ∗ // B2U.

Here, the map S3 → B2U detects the generator of π2(BU) (which maps to η ∈
π2(BGL1(S)) under the J-homomorphism). The Thom spectrum ΩV2(H

2)µ is
equivalent to T (2), and it follows that T (2) admits the structure of an E2-ring.
We do not know whether T (n) is the Thom spectrum of a p-complete spherical
fibration over some space for n ≥ 3.

It is possible to construct X(n+ 1) as an X(n)-algebra (see also [Bea18]):

Construction 3.1.10. There is a fiber sequence

ΩSU(n) → ΩSU(n+ 1) → ΩS2n+1.

According to Proposition 2.1.6, the spectrum X(n+1) is the Thom spectrum of an
E1-map ΩS2n+1 → BGL1(ΩSU(n))

µ = BGL1(X(n)). This E1-map is the extension
of a map S2n → BGL1(X(n)) which detects an element χn ∈ π2n−1X(n). This
element is equivalently determined by the map Σ∞

+ Ω2S2n+1 → X(n) given by the
Thomification of the nullhomotopic composite

Ω2S2n+1 → ΩSU(n) → ΩSU(n+ 1) → ΩSU ≃ BU,
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η η

σ1 = η
ν

ν

Figure 1. Cη ∧ Cν shown horizontally, with 0-cell on the left.
The element σ1 is given by the map η on the 4-cell defined by a
nullhomotopy of ην = 0 ∈ π4(S

0), as indicated in the diagram
above.

where the first two maps form a fiber sequence. By Proposition 2.1.6, X(n+ 1) is
the free E1-X(n)-algebra with a nullhomotopy of χn.

Remark 3.1.11. Another construction of the map χn ∈ π2n−1X(n) from Con-
struction 3.1.10 is as follows. There is a map i : CPn−1 → ΩSU(n) given by
sending a line ℓ ⊆ Cn to the loop S1 → SU(n) = Aut(Cn, ⟨, ⟩) defined as fol-
lows: θ ∈ S1 is sent to the (appropriate rescaling of the) unitary transformation of
Cn sending a vector to its rotation around the line ℓ by the angle θ. The map i
Thomifies to a stable map Σ−2CPn → X(n). The map χn is then the composite

S2n−1 → Σ−2CPn → X(n),

where the first map is the desuspension of the generalized Hopf map S2n+1 → CPn

which attaches the top cell of CPn+1. The fact that this map is indeed χn follows
immediately from the commutativity of the following diagram:

S2n−1 //

��

CPn−1 //

��

CPn

��
Ω2S2n+1 // ΩSU(n) // ΩSU(n+ 1),

where the top row is a cofiber sequence, and the bottom row is a fiber sequence.

An easy consequence of the observation in Construction 3.1.10 is the following
lemma.

Lemma 3.1.12. Let σn ∈ π|vn+1|−1T (n) denote the element χpn+1−1. Then the

Thom spectrum of the composite ΩS|vn+1|+1 → BGL1(X(pn+1−1)) → BGL1(T (n))
is equivalent to T (n+ 1).

Example 3.1.13. The element σ0 ∈ π|v1|−1T (0) = π2p−3S(p) is α1.

Example 3.1.14. Let us specialize to p = 2. Theorem 3.1.5 implies that H∗T (n) ∼=
F2[ζ

2
1 , · · · , ζ2n]. Using this, one can observe that the 6-skeleton of T (1) is the smash

product Cη ∧ Cν, and so σ1 ∈ π5(Cη ∧ Cν). This element can be described very
explicitly: the cell structure of Cη ∧ Cν is shown in Figure 1, and the element σ1

shown corresponds to the map defined by the relation ην = 0.

Example 3.1.15. The element σn in the Adams-Novikov spectral sequence for
T (n) is represented by the element [tn+1] in the cobar complex. See [Rav02,
Section 1], where σn−1 is denoted by α(v̂1/p).

A calculation with the Adams-Novikov spectral sequence (as in [Rav02, The-
orem 3.17]) proves the following:
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Lemma 3.1.16. The class σn−1 is killed by p in π|vn|−1X(pn − 1).

Proof. The argument is essentially the same as the classical observation that
α1 ∈ π2p−3(S

0) is simple p-torsion. As mentioned in Example 3.1.15, σn−1 =
α(v̂1/p) in the notation of [Rav02]. If Γ(n+1) = BP∗(BP)/(t1, · · · , tn) denotes the
Hopf algebroid of [Rav02] (so that ExtBP∗BP(BP∗,BP∗(T (n))) ∼= ExtΓ(n+1)(BP∗,BP∗)),
then α is the connecting homomorphism in cohomology over Γ(n+1) for the short
exact sequence

0 → BP∗ → p−1BP∗ → p−1BP∗/BP∗ → 0.

Since v̂1/p is of order p in p−1BP∗/BP∗, we see that α(v̂1/p) is of order p in the
E2-page of the Adams-Novikov spectral sequence computing π∗T (n). The class
α(v̂1/p) survives to the E∞-page; one observes there are are no possible additive
extensions, so pσn−1 = 0 ∈ π∗T (n). □

In particular, the element σn−1 = χpn−1 ∈ π|vn|−1X(pn − 1) is p-torsion, and
the following is a consequence of Example 3.1.15:

Proposition 3.1.17. The class σn−1 ∈ π|vn|−1X(pn − 1) is null in π∗X(pn), and
the Toda bracket ⟨p, σn−1, 1X(pn)⟩ in π|vn|X(pn) contains an indecomposable vn.

Corollary 3.1.18. The element σn−1 ∈ π|vn|−1X(pn−1) lifts to π|vn|+1(CP |vn|/2)

along the map Σ−2CP |vn|/2 → X(pn − 1).

Proof. By Remark 3.1.11, the map σn−1 : S|vn|−1 → X(pn − 1) is given by
the composite of the generalized Hopf map S|vn|−1 → Σ−2CP pn−1 with the map
Σ−2CP pn−1 → X(pn−1). Moreover, this generalized Hopf map is the desuspension
of the unstable generalized Hopf map S|vn|+1 → CP pn−1, and so σn−1 lifts to an
element of the unstable homotopy group π|vn|+1(CP |vn|/2). □

3.2. Related Thom spectra. We now introduce several Thom spectra re-
lated to the E1-rings T (n) described in the previous section; some of these were
introduced in [Dev19b]. (Relationships to T (n) will be further discussed in Sec-
tion 6.2.) For the reader’s convenience, we have included a table of the spectra
introduced below with internal references to their definitions at the beginning of
this section.

Remark 3.2.1. Recall (e.g., from [Rav86, Section 4.4]) that under the map

BP∗(BP) ∼= BP∗[t1, t2, · · · ] → H∗(BP;Fp) ∼=

{
F2[ζ

2
1 , ζ

2
2 , · · · ] p = 2,

Fp[ζ1, ζ2, · · · ] p > 2,

the class ti is sent to ζ2i (resp. ζi) modulo decomposables when p = 2 (resp. p > 2).
Moreover, under the map

H∗(BP;Fp) → H∗(HFp;Fp) ∼=

{
F2[ζ1, ζ2, · · · ] p = 2,

Fp[ζ1, ζ2, · · · ]⊗ E(τ0, τ1, · · · ) p > 2,

the classes ζi+1 (resp. τi) at p = 2 (resp. p > 2) detect a nullhomotopy of
vi ∈ π2pi−2BP in HFp ⊗ HFp. This implies, for instance, that if X is a spectrum
such that BP∗(X) ≃ BP∗/(p, · · · , vj−1)[t1, · · · , tm] with j ≤ m, then H∗(X;Fp) ∼=
Fp[ζ1, · · · , ζm]⊗E(τ1, · · · , τj−1) for p > 2, and H∗(X;F2) ∼= Fp[ζ

2
1 , · · · , ζ2j , ζj+1, · · · , ζm].

The following Thom spectrum was introduced in [MRS01].
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Definition 3.2.2. Let y(n) denote the Thom spectrum of the composite

ΩJpn−1(S
2) → Ω2S3 1−p−−→ BGL1(S∧p ).

If Jpn−1(S
2)⟨2⟩ denotes the 2-connected cover of Jpn−1(S

2), then let yZ(n) denote
the Thom spectrum of the composite

ΩJpn−1(S
2)⟨2⟩ → Ω2S3⟨3⟩ → Ω2S3 1−p−−→ BGL1(S∧p ),

so that both y(n) and yZ(n) admit the structure of E1-rings via [AB19, Corollary
3.2].

Proposition 3.2.3. As BP∗BP-comodules, we have

BP∗(y(n)) ∼= BP∗/In[t1, · · · , tn], BP∗(yZ(n)) ∼= BP∗/(v1, · · · , vn−1)[t1, · · · , tn],

where In denotes the invariant ideal (p, v1, · · · , vn−1).

Proof. The claim for y(n) is [MRS01, Equation 2.8]. There is an equiva-
lence yZ(n)/p ≃ y(n), so that BP∗(yZ(n))/p ≃ BP∗(y(n)). The Bockstein spectral
sequence collapses, and the extensions on the E∞-page simply place p in filtration
1. This implies the second equivalence. □

One corollary is the following; this can be deduced from Proposition 3.2.3
using Remark 3.2.1. We also refer to [AQ19, Lemma 2.3] for a direct proof of the
following.

Corollary 3.2.4. As A∗-comodules, we have

H∗(y(n);Fp) ∼=

{
F2[ζ1, ζ2, · · · , ζn] p = 2

Fp[ζ1, ζ2, · · · , ζn]⊗ E(τ0, · · · , τn−1) p ≥ 3,

and

H∗(yZ(n);Fp) ∼=

{
F2[ζ

2
1 , ζ2, · · · , ζn] p = 2

Fp[ζ1, ζ2, · · · , ζn]⊗ E(τ1, · · · , τn−1) p ≥ 3.

We will now relate y(n) and yZ(n) to T (n).

Construction 3.2.5. Letm ≤ n, and let Im be the ideal generated by p, v1, · · · , vm−1,
where the vi are some choices of indecomposables in π|vi|(T (n)) which form a reg-
ular sequence. Inductively define T (n)/Im as the cofiber of the map

T (n)/Im−1
vm∧1−−−→ T (n) ∧ T (n)/Im−1 → T (n)/Im−1.

The BP-homology of T (n)/Im is BP∗/Im[t1, · · · , tn]. The spectrum T (n)/(v1, · · · , vm−1)
is defined similarly.

Proposition 3.2.6. Let p > 2. There is an equivalence between T (n)/In (resp.
T (n)/(v1, · · · , vn−1)) and the spectrum y(n) (resp. yZ(n)) of Definition 3.2.2.

Proof. We will prove the result for y(n); the analogous proof works for yZ(n).
By [Gra89a], the space ΩJpn−1(S

2) is homotopy commutative (since p > 2). More-
over, the map ΩJpn−1(S

2) → Ω2S3 is an H-map, so y(n) is a homotopy commu-
tative E1-ring spectrum. It is known (see [Rav86, Section 6.5]) that homotopy
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commutative maps T (n) → y(n) are equivalent to partial complex orientations of
y(n), i.e., factorizations

S //

1
$$

Σ−2CP pn−1

γn

��
y(n).

Such a γn indeed exists by obstruction theory: suppose k < pn − 1, and we have a
map Σ−2CP k → y(n). Since there is a cofiber sequence

S2k−1 → Σ−2CP k → Σ−2CP k+1

of spectra, the obstruction to extending along Σ−2CP k+1 is an element of π2k−1y(n).
However, the homotopy of y(n) is concentrated in even degrees in the appropriate
range, so a choice of γn does indeed exist. Moreover, this choice can be made such
that they fit into a compatible family in the sense that there is a commutative
diagram

Σ−2CP pn−1 //

γn

��

Σ−2CP pn+1−1

γn+1

��
y(n) // y(n+ 1).

The formal group law over HFp has infinite height; this forces the elements p, v1, · · · , vn−1

(defined for the “(pn − 1)-bud” on π∗y(n)) to vanish in the homotopy of y(n). It
follows that the orientation T (n) → y(n) constructed above factors through the
quotient T (n)/In. The induced map T (n)/In → y(n) can be seen to be an isomor-
phism on homology (via, for instance, Definition 3.2.2 and Construction 3.2.5). □

Remark 3.2.7. Since y(n) has a vn-self-map, we can form the spectrum y(n)/vn;
its mod p homology is

H∗(y(n)/vn;Fp) ∼=

{
F2[ζ1, · · · , ζn]⊗ ΛF2

(ζn+1) p = 2

Fp[ζ1, · · · , ζn]⊗ ΛFp
(τ0, · · · , τn−1, τn) p ≥ 3.

It is in fact possible to give a construction of y(1)/v1 as a spherical Thom spectrum.
We will work at p = 2 for convenience. Define Q to be the fiber of the map
2η : S3 → S2. There is a map of fiber sequences

Q //

��

S3 2η //

��

S2

��
BGL1(S) // ∗ // B2GL1(S).

By [DM81, Theorem 3.7], the Thom spectrum of the leftmost map is y(1)/v1.

We end this section by recalling the definition of two Thom spectra which,
unlike y(n) and yZ(n), are not indexed by integers (we will see that they are only
defined at “heights 1 and 2”). These were both studied in [Dev19b].

Definition 3.2.8. Let S4 → BSpin denote the generator of π4BSpin ∼= Z, and
let ΩS5 → BSpin denote the extension of this map, which classifies a real vector
bundle of virtual dimension zero over ΩS5. Let A denote the Thom spectrum of
this bundle.
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Remark 3.2.9. As mentioned in the introduction, the spectrum A has been in-
tensely studied by Mahowald and his coauthors in (for instance) [Mah79, DM81,
Mah81b, Mah81a, Mah82, MU77], where it is often denoted X5.

Remark 3.2.10. The map ΩS5 → BSpin is one of E1-spaces, so the Thom spec-
trum A admits the structure of an E1-ring with an E1-map A → MSpin.

Remark 3.2.11. There are multiple equivalent ways to characterize this Thom
spectrum. For instance, the J-homomorphism BSpin → BGL1(S) sends the gener-
ator of π4BSpin to ν ∈ π4BGL1(S) ∼= π3S. The universal property of Thom spectra
in Theorem 2.1.7 shows that A is the free E1-ring S//ν with a nullhomotopy of ν.
Note that A is defined integrally, and not just p-locally for some prime p.

Remark 3.2.12. There is a canonical map A → T (1) of E1-rings, constructed as
follows. By the universal property of A, it suffices to prove that the unit S → T (1)
extends along the inclusion S → Cν, i.e., that ν = 0 ∈ π3T (1) up to units. To see
this, let us compute π3Cη via the exact sequence

π3S
1 η−→ π3S

0 → π3Cη → π2S
0 η−→ π1S

0.

This can be identified with

Z/2{η2} η−→ Z/8{ν} → π3Cη → Z/2{η} η−→ Z/2{η2};
the final map is an isomorphism, and the first map sends η2 7→ η3 = 4ν. Therefore,
π3Cη ∼= Z/4{ν}. Now, since the class in H4(T (1);F2) is detected by a nontrivial
Sq4, the attaching map of the 4-cell in T (1) must be ±ν. Therefore, one of ±ν
must be null in T (1), which implies that there must be a map Cν → T (1) (or
C(−ν) → T (1)) as claimed.

The following result is [Dev19b, Proposition 2.7]; it is proved there at p = 2,
but the argument clearly works for p = 3 too.

Proposition 3.2.13. There is an isomorphism BP∗(A) ∼= BP∗[y2], where |y2| = 4.
There is a map A(p) → BP. Under the induced map on BP-homology, y2 maps to

t21 mod decomposables at p = 2, and to t1 mod decomposables at p = 3.

Remark 3.2.14. For instance, when p = 2, we have BP∗(A) ∼= BP∗[t
2
1 + v1t1].

One corollary (using Remark 3.2.1) is the following.

Corollary 3.2.15. As A∗-comodules, we have

H∗(A;Fp) ∼=


F2[ζ

4
1 ] p = 2

F3[ζ1] p = 3

Fp[x4] p ≥ 5,

where x4 is a polynomial generator in degree 4.

Example 3.2.16. Let us work at p = 2 for convenience. Example 3.1.14 showed
that σ1 is the element in π5(Cη ∧ Cν) given by the lift of η to the 4-cell (which
is attached to the bottom cell by ν) via a nullhomotopy of ην. In particular, σ1

already lives in π5(Cν), and as such defines an element of S//ν = A (by viewing Cν
as the 4-skeleton of A); note that, by construction, this element is 2-torsion. The
image of σ1 ∈ π5(A) under the canonical map of Remark 3.2.12 is its namesake in
π5(T (1)). See Figure 2.
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ν 2ν 3ν

η σ1

σ

Figure 2. 15-skeleton of A at the prime 2 shown horizontally,
with 0-cell on the left. The element σ1 given by the map η on the
4-cell, as indicated in the diagram above.

Remark 3.2.17. The element σ1 ∈ π5(A(2)) defined in Example 3.2.16 in fact
lifts to an element of π5(A), because the relation ην = 0 is true integrally, and not
just 2-locally. An alternate construction of this map is the following. The Hopf
map η4 : S5 → S4 (which lives in the stable range) defines a map S5 → S4 → ΩS5

whose composite to BSpin is null (since π5(BSpin) = 0). Upon Thomification of the
composite S5 → ΩS5 → BSpin, one therefore gets a map S5 → A whose composite
with A → MSpin is null. The map S5 → A is the element σ1 ∈ π5(A).

Finally, we have:

Definition 3.2.18. Let BN be the space defined by the homotopy pullback

BN //

��

S13

f

��
BO(9) // BO(10),

where the map f : S13 → BO(10) detects an element of π12O(10) ∼= Z/12. There
is a fiber sequence

S9 → BO(9) → BO(10),

and the image of f under the boundary map in the long exact sequence of homotopy
detects 2ν ∈ π12(S

9) ∼= Z/24. In particular, there is a fiber sequence

S9 → BN → S13.

If N is defined to be ΩBN , then there is a fiber sequence

N → ΩS13 → S9.

Define a map N → BString via the map of fiber sequences

N //

��

ΩS13 //

��

S9

��
BString // ∗ // B2String,

where the map S9 → B2String detects a generator of π8BString. Let B denote the
Thom spectrum of the induced bundle over N .

Remark 3.2.19. The map N → BString is in fact one of E1-spaces, so B admits
the structure of an E1-ring. To prove this, it suffices to show that there is a map
BN → B2String. Recall that BString = τ≥8Ω

∞KO, so the desired map is the same

as a class in KO1(BN). Using the Serre spectral sequence for the fiber sequence
defining BN , one can calculate that there is a class in KO1(BN) which lifts the
generator of KO1(S9) ∼= π8KO ∼= Z.
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ν

σ
η σ2

Figure 3. Steenrod module structure of the 20-skeleton of B; the
bottom cell (in dimension 0) is on the left; straight lines are Sq4,
and curved lines correspond to Sq8 and Sq16, in order of increasing
length. The bottom two attaching maps of B are labeled. The
map σ2 is shown.

We introduced the spectrum B and studied its Adams-Novikov spectral se-
quence in [Dev19b]. The Steenrod module structure of the 20-skeleton of B is
shown in [Dev19b, Figure 1], and is reproduced here as Figure 3. As mentioned
in the introduction, the spectrum B has been briefly studied under the name X in
[HM02].

Remark 3.2.20. As with A, there are multiple different ways to characterize B.
There is a fiber sequence

ΩS9 → N → ΩS13,

and the map ΩS9 → N → BString is an extension of the map S8 → BString detect-
ing a generator. Under the J-homomorphism BString → BGL1(S), this generator
maps to σ ∈ π8BGL1(S) ∼= π7S, so the Thom spectrum of the bundle over ΩS9

determined by the map ΩS9 → BString is the free E1-ring S//σ with a nullhomo-
topy of ν. Proposition 2.1.6 now implies that N is the Thom spectrum of a map
ΩS13 → BGL1(S//σ). While a direct definition of this map is not obvious, we note
that the restriction to the bottom cell S12 of the source detects an element ν̃ of
π12BGL1(S//σ) ∼= π11S//σ. This in turn factors through the 11-skeleton of S//σ,
which is the same as the 8-skeleton of S//σ (namely, Cσ). This element is precisely
a lift of the map ν : S11 → S8 to Cσ determined by a nullhomotopy of σν in π∗S.
Although ν̃ ∈ π11Cσ does not come from a class in π11S, its representative in the
Adams spectral sequence for Cσ is the image of h22 in the Adams spectral sequence
for the sphere.

The following result is [Dev19b, Proposition 3.2]; it is proved there at p = 2,
but the argument clearly works for p ≥ 3 too.

Proposition 3.2.21. The BP∗-algebra BP∗(B) is isomorphic to a polynomial ring
BP∗[b4, y6], where |b4| = 8 and |y6| = 12. There is a map B(p) → BP. On BP∗-

homology, the elements b4 and y6 map to t41 and t22 mod decomposables at p = 2,
and y6 maps to t31 mod decomposables at p = 3.

One corollary (using Remark 3.2.1) is the following.

Corollary 3.2.22. As A∗-comodules, we have

H∗(B;Fp) ∼=


F2[ζ

8
1 , ζ

4
2 ] p = 2

F3[ζ
3
1 , b4] p = 3

F5[ζ1, x12] p = 5

Fp[x8, x12] p ≥ 7,
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where x8 and x12 are polynomial generators in degree 8 and 12, and b4 is an element
in degree 8.

Example 3.2.23. For simplicity, let us work at p = 2. There is a canonical ring
map B → T (2), and the element σ2 ∈ π13T (2) lifts to B. We can be explicit about
this: the 12-skeleton of B is shown in Figure 3, and σ2 is the element of π13(B)
existing thanks to the relation ην = 0 and the fact that the Toda bracket ⟨η, ν, σ⟩
contains 0. This also shows that σ2 ∈ π13(B) is 2-torsion.

Remark 3.2.24. The element σ2 ∈ π13(B(2)) defined in Example 3.2.23 in fact
lifts to an element of π13(B), because the relations νσ = 0, ην = 0, and 0 ∈ ⟨η, ν, σ⟩
are all true integrally, and not just 2-locally. An alternate construction of this map
S13 → B is the following. The Hopf map η12 : S13 → S12 (which lives in the stable
range) defines a map S13 → S12 → ΩS13. Moreover, the composite S13 → ΩS13 →
S9 is null, since it detects an element of π13(S

9) = 0; choosing a nullhomotopy of
this composite defines a lift S13 → N . (In fact, this comes from a map S14 →
BN .) The composite S13 → N → BString is null (since π13(BString) = 0). Upon
Thomification, we obtain a map S13 → B whose composite with B → MString is
null; the map S13 → B is the element σ2 ∈ π13(B).

The following theorem packages some information contained in this section.

Theorem 3.2.25. Let R denote any of the spectra in Table 2, and let n denote its
“height”. If R = T (n), y(n), or yZ(n), then there is a map T (n) → R, and if R = A
(resp. B), then there is a map from R to T (1) (resp. T (2)). In the first three cases,
there is an element σn ∈ π|vn+1|−1R coming from σn ∈ π|vn+1|−1T (n), and in the
cases R = A and B, there are elements σ1 ∈ π5(A) and σ2 ∈ π13(B) mapping to
the corresponding elements in T (1)(2) and T (2)(2), respectively. Moreover, σn is
p-torsion in π∗R; similarly, σ1 and σ2 are 2-torsion in π∗A(2) and π∗B(2).

Proof. The existence statement for T (n) is contained in Theorem 3.1.5, while
the torsion statement is the content of Lemma 3.1.16. The claims for y(n) and
yZ(n) now follow from Proposition 3.2.6. The existence and torsion statements for
A and B are contained in Examples 3.2.16 and 3.2.23. □

The elements in Theorem 3.2.25 can in fact be extended to infinite families;
this is discussed in Section 5.4.

3.3. Centers of Thom spectra. In this section, we review some of the theory
of Ek-centers and state Conjecture E. We begin with the following important result,
and refer to [Fra13] and [Lur16, Section 5.5.4] for proofs.

Theorem 3.3.1 ([Lur16, Example 5.5.4.16], [Fra13, Definition 2.5]). Let C be a
symmetric monoidal presentable ∞-category, and let A be an Ek-algebra in C. Then
the category of Ek-A-modules is equivalent to the category of left modules over the
factorization homology U(A) =

∫
Sk−1×R

A (known as the enveloping algebra of A),
which is an E1-algebra in C.

Definition 3.3.2. The Ek+1-center Z(A) of an Ek-algebra A in C is the (Ek+1-
)Hochschild cohomology EndU(A)(A), where A is regarded as a left module over its
enveloping algebra via Theorem 3.3.1.

Remark 3.3.3. We are using slightly different terminology than the one used in
[Lur16, Section 5.3]: our Ek+1-center is his Ek-center. In other words, Lurie’s
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terminology expresses the structure on the input, while our terminology expresses
the structure on the output.

The following proposition summarizes some results from [Fra13] and [Lur16,
Section 5.3].

Proposition 3.3.4 ([Lur16, Theorem 5.3.2.5], [Fra13, Theorem 1.1]). The Ek+1-
center Z(A) of an Ek-algebra A in a symmetric monoidal presentable ∞-category
C exists, and satisfies the following properties:

(a) Z(A) is the universal Ek-algebra of C which fits into a commutative dia-
gram

A // A⊗ Z(A)

��
A

in AlgEk
(C).

(b) The Ek-algebra Z(A) of C defined via this universal property in fact admits
the structure of an Ek+1-algebra in C.

(c) There is a fiber sequence

GL1(Z(A)) → GL1(A) → Ωk−1 EndAlgEk
(C)(A)

of k-fold loop spaces.

In the sequel, we will need a more general notion:

Definition 3.3.5. Let m ≥ 1. The Ek+m-center Zk+m(A) of an Ek-algebra A in a
presentable symmetric monoidal ∞-category C with all limits is defined inductively
as the Ek+m-center of the Ek+m−1-center Zk+m−1(A). In other words, it is the
universal Ek+m-algebra of C which fits into a commutative diagram

Zk+m−1(A) // Zk+m−1(A)⊗ Zk+m(A)

��
Zk+m−1(A)

in AlgEk+m−1
(C).

Proposition 3.3.4 gives:

Corollary 3.3.6. Let m ≥ 1. The Ek+m−1-algebra Zk+m(A) associated to an Ek-
algebra object A of C exists, and in fact admits the structure of an Ek+m-algebra
in C.

We can now finally state Conjecture E:

Conjecture E. Let n ≥ 0 be an integer. Let R denote X(pn+1−1)(p), A (in which
case n = 1), or B (in which case n = 2). Then the element σn ∈ π|σn|R lifts to the

E3-center Z3(R) of R, and is p-torsion in π∗Z3(R) if R = X(pn+1 − 1)(p), and is
2-torsion in π∗Z3(R) if R = A or B.

Remark 3.3.7. If R is A or B, then Z3(R) is the E3-center of the E2-center of
R. This is a rather unwieldy object, so it would be quite useful to show that the
E1-structure on A or B admits an extension to an E2-structure; we do not know if
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such extensions exist. Since neither ΩS5 nor N admit the structure of a double loop
space, such an E2-structure would not arise from their structure as Thom spectra.
In any case, if such extensions do exist, then Z3(R) in Conjecture E should be
interpreted as the E3-center of the E2-ring R. However, we showed in [Dev19a,
Theorem 4.2] that (tmf ∧A)[x2] admits an E2-algebra structure, where |x2| = 2.

Remark 3.3.8. In the introduction, we stated Conjecture 1.1.4, which instead
asked about whether vn ∈ π|vn|X(pn) lifts to π∗Z3(X(pn)). It is natural to ask
about the connection between Conjecture E and Conjecture 1.1.4. Proposition
3.1.17 implies that if Z3(X(pn)) admitted an X(pn − 1)-orientation factoring the
canonical X(pn − 1)-orientation X(pn − 1) → X(pn), and σn−1 ∈ π|vn|−1X(pn −
1) was killed by the map X(pn − 1) → Z3(X(pn)), then Conjecture E implies
Conjecture 1.1.4. However, we do not believe that either of these statements are
true.

Remark 3.3.9. One of the main results of [Kla18] implies that the E3-center
of X(n) (which, recall, is the Thom spectrum of a bundle over Ω2BSU(n)) is
HomSU(n)+(S, X(n)) ≃ X(n)hSU(n), where SU(n) acts on X(n) by a Thomifica-
tion of the conjugation action on ΩSU(n).

Remark 3.3.10. Note that the conjugation action of SU(n) on X(n) can be de-
scribed very explicitly, via a concrete model for ΩSU(n). As explained in [PS86,
Zhu17], if G is a reductive linear algebraic group over C, the loop space ΩG(C)
of its complex points (viewed as a complex Lie group) is equivalent to the homo-
geneous space G(C((t)))/G(C[[t]]); this is also commonly studied as the complex
points of the affine Grassmannian GrG of G. The conjugation action of G(C) on
ΩG(C) arises by restricting the descent (to G(C((t)))/G(C[[t]])) of the translation
action by G(C[[t]]) on G(C((t))) to the subgroup G(C) ⊆ G(C[[t]]). Setting G = SLn

gives a description of the conjugation action of SU(n) on ΩSU(n). In light of its
connections to geometric representation theory, we believe that there may be an
algebro-geometric approach to proving that χn is SU(n)-trivial in X(n) and in
ΩSU(n).

Example 3.3.11. The element χ2 ∈ π3X(2) is central. To see this, note that
α ∈ π∗R (where R is an Ek-ring) is in the Ek+1-center of R if and only if α is
in the Ek+1-center of R(p) for all primes p ≥ 0. It therefore suffices to show that
χ2 is central after p-localizing for all p. First, note that χ2 is torsion, so it is
nullhomotopic (and therefore central) after rationalization. Next, if p > 2, then
X(2)(p) splits as a wedge of suspensions of spheres. If χ2 is detected in π3 of a
sphere living in dimension 3, then it could not be torsion, so it must be detected
in π3 of a sphere living in dimension 3− k for some 0 ≤ k ≤ 2. If k = 1 or 2, then
π3(S

3−k) is either π1(S
0) or π2(S

0), but both of these groups vanish for p > 2.
Therefore, χ2 must be detected in π3 of the sphere in dimension 0, i.e., in π3X(1).
This group vanishes for p > 3, and when p = 3, it is isomorphic to Z/3 (generated
by α1). Since X(1) = S0 is an E∞-ring, we conclude that χ2 is central in X(2)(p)
for all p > 2.

At p = 2, we know the cell structure of X(2) in the bottom few dimensions
(see Example 3.1.14; note that σ1 is not χ2). In dimensions ≤ 3, it is equivalent
to Cη, so π3X(2) ∼= π3Cη. However, it is easy to see that the canonical map
π3S ≃ Z/8{ν} → π3Cη is surjective and exhibits an isomorphism π3Cη ∼= Z/4{ν}.
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Therefore, χ2 is in the image of the unit S → X(2), and is therefore vacuously
central. We conclude from the above discussion that χ2 is indeed central in X(2).
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4. Review of some unstable homotopy theory

4.1. Charming and Gray maps. A major milestone in unstable homotopy
theory was Cohen-Moore-Neisendorfer’s result on the p-exponent of unstable homo-
topy groups of spheres from [CMN79a, CMN79b, Nei81]. They defined for all
p > 2 and k ≥ 1 a map ϕn : Ω2S2n+1 → S2n−1 (the integer k is assumed implicit)
such that the composite of ϕn with the double suspension E2 : S2n−1 → Ω2S2n+1 is
homotopic to the pk-th power map. By induction on n, they concluded via a result
of Selick’s (see [Sel77]) that pn kills the p-primary component of the homotopy of
S2n+1. Such maps will be important in the rest of this article, so we will isolate
their desired properties in the definition of a charming map, inspired by [ST19].
(Our choice of terminology is non-standard, and admittedly horrible, but it does
not seem like the literature has chosen any naming convention for the sort of maps
we desire.)

Definition 4.1.1. A p-local map f : Ω2S2np+1 → S2np−1 is called a Gray map if
the composite of f with the double suspension E2 is the degree p map, and the
composite

Ω2S2n+1 ΩH−−→ Ω2S2np+1 f−→ S2np−1

is nullhomotopic. Moreover, a p-local map f : Ω2S2np+1 → S2np−1 is called a
charming map if the composite of f with the double suspension E2 is the degree p
map, the fiber of f admits the structure of a Q1-space, and if there is a space BK
which sits in a fiber sequence

S2np−1 → BK → ΩS2np+1

such that the boundary map Ω2S2np+1 → S2np−1 is homotopic to f .

Remark 4.1.2. If f is a charming map, then the fiber of f is a loop space. Indeed,
fib(f) ≃ ΩBK.

Example 4.1.3. Let f denote the Cohen-Moore-Neisendorfer map with k = 1.
Anick proved (see [Ani93, GT10]) that the fiber of f admits a delooping, i.e.,
there is a space T 2np+1(p) (now known as an Anick space) which sits in a fiber
sequence

S2np−1 → T 2np+1(p) → ΩS2np+1.

It follows that f is a charming map.

Remark 4.1.4. We claim that T 2p+1(p) = ΩS3⟨3⟩, where S3⟨3⟩ is the 3-connected
cover of S3. To prove this, we will construct a p-local fiber sequence

S2p−1 → ΩS3⟨3⟩ → ΩS2p+1.

This fiber sequence was originally constructed by Toda in [Tod62]. To construct
this fiber sequence, we first note that there is a p-local fiber sequence

S2p−1 → Jp−1(S
2) → CP∞,

where the first map is the factorization of α1 : S2p−1 → ΩS3 through the 2(p− 1)-
skeleton of ΩS3, and the second map is the composite Jp−1(S

2) → ΩS3 → CP∞.
This fiber sequence is simply an odd-primary version of the Hopf fibration S3 →
S2 → CP∞; the identification of the fiber of the map Jp−1(S

2) → CP∞ is a simple
exercise with the Serre spectral sequence. Next, we have the EHP sequence

Jp−1(S
2) → ΩS3 → ΩS2p+1.
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Since ΩS3⟨3⟩ is the fiber of the map ΩS3 → CP∞, the desired fiber sequence is
obtained by taking vertical fibers in the following map of fiber sequences:

Jp−1(S
2) //

��

ΩS3 //

��

ΩS2p+1

��
CP∞ CP∞ // ∗.

Example 4.1.5. Let Wn denote the fiber of the double suspension S2n−1 →
Ω2S2n+1. Gray proved in [Gra89b, Gra88] that Wn admits a delooping BWn,
and that after p-localization, there is a fiber sequence

BWn → Ω2S2np+1 f−→ S2np−1

for some map f . As suggested by the naming convention, f is a Gray map.

As proved in [ST19], Gray maps satisfy an important rigidity property:

Proposition 4.1.6 (Selick-Theriault). The fiber of any Gray map admits an H-
space structure, and is H-equivalent to BWn.

Remark 4.1.7. It has been conjectured by Cohen-Moore-Neisendorfer and Gray
in the papers cited above that there is an equivalence BWn ≃ ΩT 2np+1(p), and
that ΩT 2np+1(p) retracts off of Ω2P 2np+1(p) as an H-space, where P k(p) is the
mod p Moore space Sk−1 ∪p ek with top cell in dimension k. For our purposes,
we shall require something slightly stronger: namely, the retraction should be one
of Q1-spaces. The first part of this conjecture would follow from Proposition 4.1.6
if the Cohen-Moore-Neisendorfer map were a Gray map. In [Ame20], it is shown
that the existence of p-primary elements of Kervaire invariant one would imply
equivalences of the form BWpn−1 ≃ ΩT 2pn+1(p).

Motivated by Remark 4.1.7 and Proposition 4.1.6, we state the following con-
jecture; it is slightly weaker than the conjecture mentioned in Remark 4.1.7, and is
an amalgamation of slight modifications of conjectures of Cohen, Moore, Neisendor-
fer, Gray, and Mahowald in unstable homotopy theory, as well as an analogue of
Proposition 4.1.6. (For instance, we strengthen having an H-space retraction to
having a Q1-space retraction).

Conjecture D. The following statements are true:

(a) The homotopy fiber of any charming map is equivalent as a loop space to
the loop space on an Anick space.

(b) There exists a p-local charming map f : Ω2S2pn+1 → S2pn−1 whose ho-
motopy fiber admits a Q1-space retraction off of Ω2P 2pn+1(p). There are
also integrally defined maps Ω2S9 → S7 and Ω2S17 → S15 whose compos-
ite with the double suspension on S7 and S15 respectively is the degree 2
map, whose homotopy fibers K2 and K3 (respectively) admit deloopings,
and which admits a Q1-space retraction off Ω2P 9(2) and Ω2P 17(2) (respec-
tively).

Remark 4.1.8. Conjecture D is already not known when n = 1. In this case, it
asserts that Ω2S3⟨3⟩ retracts off of Ω2P 2p+1(p). A theorem of Selick’s states that
Ω2S3⟨3⟩ retracts off of Ω2S2p+1{p} for p odd, where Ω2S2p+1{p} is the fiber of the
degree p map on Ω2S2p+1. This implies that Ω2S3⟨3⟩ retracts off of Ω3P 2p+2(p). In
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[Coh87, Observation 9.2], the question of whether Ω2S3⟨3⟩ retracts off of Ω2P 2p+1(p)
was shown to be equivalent to the question of whether there is a map Σ2Ω2S3⟨3⟩ →
P 2p+1(p) which is onto in homology. Some recent results regarding Conjecture D
for n = 1 can be found in [BT13].

It follows that a retraction of Ω2S3⟨3⟩ off Ω2P 2p+1(p) will be compatible with
the canonical map Ω2S3⟨3⟩ → Ω2S3 in the following manner. The p-torsion ele-
ment α1 ∈ π2p(S

3) defines a map P 2p−1(p) → Ω2S3, which extends to an E2-map
Ω2P 2p+1(p) → Ω2S3. We will abusively denote this extension by α1. The resulting
composite

Ω2S3⟨3⟩ → Ω2P 2p+1(p)
α1−→ Ω2S3

is homotopic to the canonical map Ω2S3⟨3⟩ → Ω2S3.
The element α1 ∈ π2p−3(S(p)) defines a map S2p−2 → BGL1(S(p)), and since

it is p-torsion, admits an extension to a map P 2p−1(p) → BGL1(S(p)). (This
extension is in fact unique, because π2p−1(BGL1(S(p))) ∼= π2p−2(S(p)) vanishes.)
Since BGL1(S(p)) is an infinite loop space, this map further extends to a map

Ω2P 2p+1(p) → BGL1(S(p)). The discussion in the previous paragraph implies that

if Conjecture D is true for n = 1, then the map µ : Ω2S3⟨3⟩ → BGL1(S(p)) from
Corollary 2.2.2 is homotopic to the composite

Ω2S3⟨3⟩ → Ω2P 2p+1(p) → BGL1(S(p)).

4.2. Fibers of charming maps. We shall need the following proposition.

Proposition 4.2.1. Let f : Ω2S2pn+1 → S2pn−1 be a charming map. Then there
are isomorphisms of coalgebras:

H∗(fib(f);Fp) ∼=

{
Fp[x

2
2n+1−1]⊗

⊗
k>1 Fp[x2n+k−1] p = 2⊗

k>0 Fp[y2(pn+k−1)]⊗
⊗

j>0 ΛFp
[x2pn+j−1] p > 2.

Proof. This is an easy consequence of the Serre spectral sequence coupled
with the well-known coalgebra isomorphisms

H∗(Ω
2S2n+1;Fp) ∼=

{⊗
k>0 Fp[x2kn−1] p = 2⊗
k>0 Fp[y2(npk−1)]⊗

⊗
j≥0 ΛFp

[x2npj−1] p > 2,

where these classes are generated by the one in dimension 2n−1 via the single Dyer-
Lashof operation (coming already from the cup-1 operad; see Remark 2.2.8). □

Remark 4.2.2. The Anick spaces T 2np+1(p) from Example 4.1.3 sit in fiber se-
quences

S2np−1 → T 2np+1(p) → ΩS2np+1,

and are homotopy commutative H-spaces. A Serre spectral sequence calculation
gives an identification of coalgebras

H∗(T
2np+1(p);Fp) ∼= Fp[a2np]⊗ ΛFp [b2np−1],

with β(a2np) = b2np−1, where β is the Bockstein homomorphism. An argument with
the bar spectral sequence recovers the result of Proposition 4.2.1 in this particular
case.

Remark 4.2.3. Suppose that X is a space which sits in a fiber sequence

S2np−1 → X → ΩS2np+1
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such that the boundary map Ω2S2np+1 → S2np−1 has degree pj on the bottom
cell of the source. The Serre spectral sequence then only has a differential on the
E2np−1-page, and:

Hi(BK;Z) ∼=


Z i = 0

Z/pjk if i = 2npk − 1

0 else.

We conclude this section by investigating Thom spectra of bundles defined over
fibers of charming maps. Let R be a p-local E1-ring, and let µ : K → BGL1(R)
denote a map from the fiber K of a charming map f : Ω2S2np+1 → S2np−1. There
is a fiber sequence ΩS2np−1 → K → Ω2S2np+1 of loop spaces, so we obtain a map
ΩS2np−1 → BGL1(R). Such a map gives an element α ∈ π2np−3R via the effect on
the bottom cell S2np−2.

Theorem 2.1.7 implies that the Thom spectrum of the map ΩS2np−1 → BGL1(R)
should be thought of as the E1-quotient R//α, although this may not make sense
if R is not at least E2. However, in many cases (such as the ones we are con-
sidering here), the Thom R-module R//α is in fact an E1-ring such that the
map R → R//α is an E1-map. By Proposition 2.1.6, there is an induced map
ϕ : Ω2S2np+1 → BGL1(R//α) whose Thom spectrum is equivalent as an E1-ring to
Kµ. We would like to determine the element2 of π∗R//α detected by the restriction
to the bottom cell S2np−1 of the source of ϕ. First, we note:

Lemma 4.2.4. The element α ∈ π2np−3R is p-torsion.

Proof. Since f is a charming map, the composite S2np−1 → Ω2S2np−1 f−→
S2np−1 is the degree p map. Therefore, the element pα ∈ π2np−3R is detected by
the composite

S2np−2 → ΩS2np−1 → Ω3S2np−1 Ωf−−→ ΩS2np−1 → K
µ−→ BGL1(R).

But there is a fiber sequence Ω2S2np−1 f−→ S2np−1 → BK by the definition of a
charming map, so the composite detecting pα is null, as desired. □

There is now a square

S2np−2/p //

��

S2np−1

��
K //

α

��

Ω2S2np+1

��
BGL1(R) // BGL1(R//α),

and the following result is a consequence of the lemma and the definition of Toda
brackets:

Lemma 4.2.5. The element in π2np−2(R//α) detected by the vertical map S2np−1 →
BGL1(R//α) lives in the Toda bracket ⟨p, α, 1R//α⟩.

2Technically, this is bad terminology: there are multiple possibilities for the map ϕ, and each

gives rise to a map S2np−1 → BGL1(R//α). The elements in π2np−2(R//α) determined in this way

need not agree, but they are the same modulo the indeterminacy of the Toda bracket ⟨p, α, 1R//α⟩.
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The upshot of this discussion is the following:

Proposition 4.2.6. Let R be a p-local E1-ring, and let µ : K → BGL1(R)
denote a map from the fiber K of a charming map f : Ω2S2np+1 → S2np−1,
providing an element α ∈ π2np−3R. Assume that the Thom spectrum R//α of
the map ΩS2np−1 → BGL1(R) is an E1-R-algebra. Then there is an element
v ∈ ⟨p, α, 1R//α⟩ such that Kµ is equivalent to the Thom spectrum of the map

Ω2S2np+1 v−→ BGL1(R//α).

Remark 4.2.7. Let R be an E1-ring, and let α ∈ πdR. Then α defines a map
Sd+1 → BGL1(R), and it is natural to ask when α extends along Sd+1 → ΩSd+2,
or at least along Sd+1 → Jk(S

d+1) for some k. This is automatic if R is an E2-ring,
but not necessarily so if R is only an E1-ring. Recall that there is a cofiber sequence

S(k+1)(d+1)−1 → Jk(S
d+1) → Jk+1(S

d+1),

where the first map is the (k+1)-fold iteratedWhitehead product [ιd+1, [· · · , [ιd+1, ιd+1]], · · · ].
In particular, the map Sd+1 → BGL1(R) extends along the map Sd+1 → Jk(S

d+1)
if and only if there are compatible nullhomotopies of the n-fold iterated Whitehead
products [α, [· · · , [α, α]], · · · ] ∈ π∗BGL1(R) for n ≤ k. These amount to properties
of Toda brackets in the homotopy of R. We note, for instance, that the Whitehead
bracket [α, α] ∈ π2d+1BGL1(R) ∼= π2dR is the element 2α2; therefore, the map
Sd+1 → BGL1(R) extends to J2(S

d+1) if and only if 2α2 = 0.

Remark 4.2.8. Let R be a p-local E2-ring, and let α ∈ πd(R) with d even. Then
α defines an element α ∈ πd+2B

2GL1(R). The p-fold iterated Whitehead product
[α, · · · , α] ∈ πp(d+2)−(p−1)B

2GL1(R) ∼= πpd+(p−1)R is given by p!Q1(α) modulo de-
composables. This is in fact true more generally. Let R be an En-ring, and suppose
α ∈ πd(R). Let i < n, so α defines an element α ∈ πd+iB

iGL1(R). The p-fold iter-
ated Whitehead product [α, · · · , α] ∈ πp(d+i)−(p−1)B

iGL1(R) ∼= πpd+(i−1)(p−1)R is
given by p!Qi−1(α) modulo decomposables.

We will describe this in detail in forthcoming work: the basic idea is to reduce
to the universal example of an En-ring, and relate Whitehead products on π∗(S

n)
to the Ed-Browder bracket on ΩdSn

+ (where d ≥ n). Recall the isomorphism πjS
n ∼=

πj−dΩ
dSn. If α ∈ πiS

n and β ∈ πjS
n, then we will show in future work that the

stabilization of the Whitehead product [α, β] ∈ πi+j−1S
n ∼= πi+j−dΩ

dSn is closely
related to the Ed-Browder bracket [α, β]Ed

.
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5. Chromatic Thom spectra

5.1. Statement of the theorem. To state the main theorem of this section,
we set some notation. Fix an integer n ≥ 1, and work in the p-complete stable
category. For each Thom spectrum R of height n−1 in Table 1, let σn−1 : S|σn−1| →
BGL1(R) denote a map detecting σn−1 ∈ π|σn−1|(R) (which exists by Theorem

3.2.25). Let Kn denote the fiber of a p-local charming map Ω2S2pn+1 → S2pn−1

satisfying the hypotheses of Conjecture D, and let K2 (resp. K3) denote the fiber
of an integrally defined charming map Ω2S9 → S7 (resp. Ω2S17 → S15) satisfying
the hypotheses of Conjecture D.

Then:

Theorem A. Let R be a height n − 1 spectrum as in the second line of Table 1.
Then Conjectures D and E imply that there is a map Kn → BGL1(R) such that the
mod p homology of the Thom spectrum Kµ

n is isomorphic to the mod p homology of
the associated designer chromatic spectrum Θ(R) as a Steenrod comodule.

If R is any base spectrum other than B, the Thom spectrum Kµ
n is equivalent

to Θ(R) upon p-completion for every prime p. If Conjecture F is true, then the
same is true for B: the Thom spectrum Kµ

n is equivalent to Θ(B) = tmf upon
2-completion.

We emphasize again that näıvely making sense of Theorem A relies on knowing
that T (n) admits the structure of an E1-ring; we shall interpret this phrase as in
Warning 3.1.6.

Remark 5.1.1. Theorem A is proved independently of the nilpotence theorem.
(In fact, it is even independent of Quillen’s identification of π∗MU with the Lazard
ring, provided one regards the existence of designer chromatic spectra as being
independent of Quillen’s identification.) We shall elaborate on the connection be-
tween Theorem A and the nilpotence theorem in future work; a sketch is provided
in Remark 5.4.7.

Remark 5.1.2. Theorem A is true unconditionally when n = 1, since that case is
simply Corollary 2.2.2.

Remark 5.1.3. Note that Table 2 implies that the homology of each of the Thom
spectra in Table 1 are given by the Q0-Margolis homology of their associated de-
signer chromatic spectra. In particular, the map R → Θ(R) is a rational equiva-
lence.

Before we proceed with the proof of Theorem A, we observe some consequences.

Corollary B. Conjecture D and Conjecture E imply Conjecture 1.1.3.

Proof. This follows from Theorem A, Proposition 4.2.6, and Proposition
3.1.17. □

Remark 5.1.4. Corollary B is true unconditionally when n = 1, since Theorem A
is true unconditionally in that case by Remark 5.1.2. See also Remark 4.1.4.

Remark 5.1.5. We can attempt to apply Theorem A for R = A in conjunction
with Proposition 4.2.6. Theorem A states that Conjecture D and Conjecture E
imply that there is a map K2 → BGL1(A) whose Thom spectrum is equivalent to
bo. There is a fiber sequence

ΩS7 → K2 → Ω2S9,
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so we obtain a map µ : ΩS7 → K2 → BGL1(A). The proof of Theorem A shows that
the bottom cell S6 of the source detects σ1 ∈ π5(A). A slight variation of the ar-
gument used to establish Proposition 4.2.6 supplies a map Ω2S9 → BAut((ΩS7)µ)
whose Thom spectrum is bo. The spectrum (ΩS7)µ has mod 2 homology F2[ζ

4
1 , ζ

2
2 ].

However, unlike A, it does not naturally arise an E1-Thom spectrum over the sphere
spectrum; this makes it unamenable to study via techniques of unstable homotopy.

More precisely, (ΩS7)µ is not the Thom spectrum of an E1-map X → BGL1(S)
from a loop space X which sits in a fiber sequence

ΩS5 → X → ΩS7

of loop spaces. Indeed, BX would be a S5-bundle over S7, which by [Mah87,
Lemma 4] implies that X is then equivalent as a loop space to ΩS5 × ΩS7. The
resulting E1-map ΩS7 → BGL1(S) is specified by an element of π5(S) ∼= 0, so
(ΩS7)µ must then be equivalent as an E1-ring to A ∧ Σ∞

+ ΩS7. In particular, σ1 ∈
π5(A) would map nontrivially to (ΩS7)µ, which is a contradiction.

The proof of Theorem A will also show:

Corollary 5.1.6. Let R be a height n− 1 spectrum as in the second line of Table
1, and assume Conjecture F if R = B. Let M be an E3-R-algebra. Conjecture D
and Conjecture E imply that if:

(a) the composite Z3(R) → R → M is an E3-algebra map,
(b) the element σn−1 in π∗M is nullhomotopic,
(c) and the bracket ⟨p, σn−1, 1M ⟩ contains zero,

then there is a unital map Θ(R) → M .

5.2. The proof of Theorem A. This section is devoted to giving a proof of
Theorem A, dependent on Conjecture D and Conjecture E. The proof of Theorem
A will be broken down into multiple steps. The result for y(n) and yZ(n) follow
from the result for T (n) by Proposition 3.2.6, so we shall restrict ourselves to the
cases of R being T (n), A, and B.

Fix n ≥ 1. If R is A or B, we will restrict to p = 2, and let K2 and K3 denote
the integrally defined spaces from Conjecture D. By Remarks 3.2.17 and 3.2.24,
the elements σ1 ∈ π5(A) and σ2 ∈ π13(B) are defined integrally. We will write
σn−1 to generically denote this element, and will write it as living in degree |σn−1|.
We shall also write R to denote X(pn − 1) and not T (n); this will be so that we
can apply Conjecture D. We apologize for the inconvenience, but hope that this is
worth circumventing the task of having to read through essentially the same proofs
for these slightly different cases.

Step 1. We begin by constructing a map µ : Kn → BGL1(R) as required by
the statement of Theorem A; the construction in the case n = 1 follows Remark
4.1.8. By Conjecture D, the space Kn splits off Ω2P |σn−1|+4(p) (if R = T (n),
then |σn−1| + 4 = |vn| + 3). We are therefore reduced to constructing a map
Ω2P |σn−1|+4(p) → BGL1(R). Theorem 3.2.25 shows that the element σn−1 ∈ π∗R
is p-torsion, so the map S|σn−1|+1 → BGL1(R) detecting σn−1 extends to a map

(5.1) S|σn−1|+1/p = P |σn−1|+2(p) → BGL1(R).

Since Ω2P |σn−1|+4(p) ≃ Ω2Σ2P |σn−1|+2(p), we would obtain an extension µ̃ of this
map through Ω2P |σn−1|+4(p) if R admits an E3-structure.
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Unfortunately, this is not true; but this is where Conjecture E comes in: it says
that the element σn−1 ∈ π|σn−1|R lifts to the E3-center Z3(R), where it has the
same torsion order as in R. (Here, we are abusively writing Z3(T (n− 1)) to denote
the E3-center of X(pn − 1)(p).) The lifting of σn−1 to π|σn−1|Z3(R) provided by
Conjecture E gives a factorization of the map from (5.1) as

S|σn−1|+1/p = P |σn−1|+2(p) → BGL1(Z3(R)) → BGL1(R).

Since Z3(R) is an E3-ring, BGL1(Z3(R)) admits the structure of an E2-space. In
particular, the map P |σn−1|+2(p) → BGL1(Z3(R)) factors through Ω2P |σn−1|+4(p),
as desired. We let µ̃ denote the resulting composite

µ̃ : Ω2P |σn−1|+4(p) → BGL1(Z3(R)) → BGL1(R).

Step 2. Theorem A asserts that there is an identification between the Thom
spectrum of the induced map µ : Kn → BGL1(R) and the associated designer
chromatic spectrum Θ(R) via Table 1. We shall identify the Steenrod comodule
structure on the mod p homology of Kµ

n , and show that it agrees with the mod p
homology of Θ(R).

Designer chromatic spectrum Mod p homology

BP⟨n− 1⟩ p = 2 F2[ζ
2
1 , · · · , ζ2n−1, ζ

2
n, ζn+1, · · · ]

p > 2 Fp[ζ1, ζ2, · · · ]⊗ ΛFp
(τn, τn+1, · · · )

k(n− 1)
p = 2 F2[ζ1, · · · , ζn−1, ζ

2
n, ζn+1, · · · ]

p > 2 Fp[ζ1, ζ2, · · · ]⊗ ΛFp(τ0, · · · , τn−2, τn, τn+1, · · · )

kZ(n− 1)
p = 2 F2[ζ

2
1 , ζ2, · · · , ζn−1, ζ

2
n, ζn+1, · · · ]

p > 2 Fp[ζ1, ζ2, · · · ]⊗ ΛFp(τ1, · · · , τn−2, τn, τn+1, · · · )

bo
p = 2 F2[ζ

4
1 , ζ

2
2 , ζ3, · · · ]

p > 2 Fp[x4]/v1 ⊗ Fp[ζ1, ζ2, · · · ]⊗ ΛFp
(τ2, τ3, · · · )

tmf
p = 2 F2[ζ

8
1 , ζ

4
2 , ζ

2
3 , ζ4, · · · ]

p = 3 ΛF3
(b4)⊗ F3[ζ

3
1 , ζ2, · · · ]⊗ ΛF3

(τ3, τ4, · · · )
p ≥ 5 Fp[c4, c6]/(v1, v2)⊗ Fp[ζ1, ζ2, · · · ]⊗ ΛFp

(τ3, τ4, · · · )

Table 3. The mod p homology of designer chromatic spectra.
See [LN14, Theorem 4.3], as well as [Wil75, Proposition 1.7]
and [AR05, Proposition 5.3] for a proof of the statement for
H∗(BP⟨n− 1⟩;Fp); this implies the calculations of H∗(k(n−1);Fp)
and H∗(kZ(n− 1);Fp). See [AR05, Proposition 6.1] for a proof of
the statements for H∗(bo;F2) and H∗(tmf;F2), and [Rez07, The-
orem 21.5] for H∗(tmf;Fp) for any p. For odd p, bo(p) is a sum of
shifts of BP⟨1⟩, which implies the statement about H∗(bo;Fp).

In Table 3, we have recorded the mod p homology of the designer chromatic
spectra in Table 1 (see [LN14, Theorem 4.3] for BP⟨n− 1⟩). It follows from Propo-
sition 4.2.1 that there is an isomorphism

H∗(K
µ
n)

∼=

{
H∗(R)⊗ F2[x

2
2n+1−1]⊗

⊗
k>1 F2[x2n+k−1] p = 2

H∗(R)⊗
⊗

k>0 Fp[y2(pn+k−1)]⊗
⊗

j>0 ΛFp
[x2pn+j−1] p > 2.

Combining this isomorphism with Theorem 3.1.5, Proposition 3.2.4, Proposition
3.2.15, and Proposition 3.2.22, we find that there is an abstract equivalence between
the mod p homology of Kµ

n and the mod p homology of Θ(R).
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We shall now work at p = 2 for the remainder of the proof; the same argument
goes through with slight modifications at odd primes. We now identify the Steen-
rod comodule structure on H∗(K

µ
n). Recall that µ̃ is the map Ω2P |σn−1|+4(p) →

BGL1(R) from Step 1. By construction, there is a map Kµ
n → Ω2P |σn−1|+4(p)µ̃.

The map Φ factors through a map Φ̃ : Ω2P |σn−1|+4(p)µ̃ → Θ(R). The Thom spec-
trum Ω2P |σn−1|+4(p)µ̃ admits the structure of a Q1-ring. Indeed, it is the smash
product Ω2P |σn−1|+4(p)ϕ ∧Z3(R) R, where ϕ : Ω2P |σn−1|+4(p) → BGL1(Z3(R));

it therefore suffices to observe that the Thom spectrum Ω2P |σn−1|+4(p)ϕ admits
the structure of an E1 ⊗ Q1-ring. (Here, E1 ⊗ Q1 denotes the Boardman-Vogt
tensor product of the E1- and Q1-operads.) Since there is a map Q1 → E2 of ∞-
operads, this is a consequence of the fact that ϕ is a double loop map, and hence
an E1 ⊗ Q1-algebra map. Moreover, the image of H∗(K

µ
n) in H∗(Ω

2P |σn−1|+4(p)µ̃)
is generated under the single Dyer-Lashof operation (arising from the cup-1 op-
erad; see Remark 2.2.8) by the indecomposables in the image of the map H∗(R) →
H∗(Ω

2P |σn−1|+4(p)µ̃).
The Postnikov truncation map Ω2P |σn−1|+4(p)µ̃ → Hπ0

(
Ω2P |σn−1|+4(p)µ̃

)
is

one of Q1-rings. Since Ω2P |σn−1|+4(p) is highly connected, π0

(
Ω2P |σn−1|+4(p)µ̃

) ∼=
π0(R). In particular, there is an E∞-map Hπ0

(
Ω2P |σn−1|+4(p)µ̃

)
→ HFp. The

composite

Ω2P |σn−1|+4(p)µ̃ → Hπ0

(
Ω2P |σn−1|+4(p)µ̃

)
→ HFp

is therefore a Q1-algebra map. Moreover, the composite

R → Ω2P |σn−1|+4(p)µ̃ → Hπ0

(
Ω2P |σn−1|+4(p)µ̃

)
→ HFp

is simply the Postnikov truncation for R. It follows that the indecomposables in
H∗(Ω

2P |σn−1|+4(p)µ̃) which come from the indecomposables in H∗(R) are sent to
the indecomposables in H∗(HFp). Using the discussion in the previous paragraph,
Steinberger’s calculation (Theorem 2.2.4), and the Dyer-Lashof hopping argument
of Remark 2.2.9, we may conclude that the Steenrod comodule structure on H∗(K

µ
n)

(which, recall, is abstractly isomorphic to H∗(Θ(R))) agrees with the Steenrod
comodule structure on H∗(Θ(R)).

Step 3. By Step 2, the mod p homology of the Thom spectrumKµ
n is isomorphic

to the mod p homology of the associated designer chromatic spectrum Θ(R) as a
Steenrod comodule. The main result of [AL17] and [AP76, Theorem 1.1] now
imply that unless R = B, the Thom spectrum Kµ

n is equivalent to Θ(R) upon
p-completion for every prime p. Finally, if Conjecture F is true, then the same
conclusion can be drawn for B: the Thom spectrumKµ

n is equivalent to Θ(B) = tmf
upon p-completion for every prime p.

This concludes the proof of Theorem A.

5.3. Remark on the proof. Before proceeding, we note the following con-
sequence of the proof of Theorem A.

Proposition 5.3.1. Let p be an odd prime. Assume Conjecture D and Conjecture
E. Then the composite

g2 : Ω2S|σn−1|+3 → Ω2P |σn−1|+4(p)
µ̃−→ BGL1(X(pn − 1)) → BGL1(BP⟨n− 1⟩)

is null.
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Proof. Let R = X(pn − 1), and let Θ(R) = BP⟨n− 1⟩. The map g2 is the
composite with BGL1(Z3(R)) → BGL1(Θ(R)) with the extension of the map

σn−1 : S|σn−1|+1 → BGL1(Z3(R))

along the double suspension S|σn−1|+1 → Ω2S|σn−1|+3. Since σn−1 is null in π∗Θ(R),
we would be done if g2 was homotopic to the dotted extension

S|σn−1|+1
σn−1 //

��

BGL1(Θ(R))

Ω2S|σn−1|+3

g′
2

77

The potential failure of these maps to be homotopic stems from the fact that the
composite Z3(R) → R → Θ(R) need not be a map of E3-rings. It is, however, a
map of E2-rings; therefore, the maps

g1 : ΩS|σn−1|+2 → BGL1(Z3(R)) → BGL1(Θ(R))

and

g′1 : ΩS|σn−1|+2 → BGL1(Θ(R))

obtained by extending along the suspension S|σn−1|+1 → ΩS|σn−1|+2 are homotopic.
We now utilize the following result of Serre’s:

Proposition 5.3.2 (Serre, [Ser53, p. 281]). Let p be an odd prime. Then the
suspension S2n−1 → ΩS2n splits upon p-localization: there is a p-local equivalence

E × Ω[ι2n, ι2n] : S
2n−1 × ΩS4n−1 → ΩS2n.

This implies that the suspension map ΩS|σn−1|+2 → Ω2S|σn−1|+3 admits a
splitting as loop spaces. In particular, this implies that the map g2 is homotopic to
the composite

Ω2S|σn−1|+3 → ΩS|σn−1|+2 g1−→ BGL1(Z3(R)) → BGL1(Θ(R)),

and similarly for g′2. Since g1 and g′1 are homotopic, and g′1 (and hence g′2) is null,
we find that g2 is also null, as desired. □

5.4. Infinite families and the nilpotence theorem. We now briefly dis-
cuss the relationship between Theorem A and the nilpotence theorem. We begin
by describing a special case of this connection. Recall from Remark 2.2.3 that
Theorem 2.2.1 implies that if R is an E2-ring spectrum, and x ∈ π∗R is a simple
p-torsion element which has trivial MU-Hurewicz image, then x is nilpotent. A
similar argument implies the following.

Proposition 5.4.1. Assume Conjecture D when n = 1. Then Corollary 2.2.2
(i.e., Theorem A when n = 1) implies that if R is a p-local E3-ring spectrum, and
x ∈ π∗R is a class with trivial HZp-Hurewicz image such that:

• α1x = 0 in π∗R; and
• the Toda bracket ⟨p, α1, x⟩ contains zero;

then x is nilpotent.
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Proof. We claim that the composite

(5.2) Ω2S3⟨3⟩ → BGL1(S(p)) → BGL1(R[1/x])

is null. Remark 4.1.8 implies that Conjecture D for n = 1 reduces us to showing
that the composite

Ω2P 2p+1(p)
α1−→ BGL1(S(p)) → BGL1(R[1/x])

is null. Since this composite is one of double loop spaces, it further suffices to show
that the composite

(5.3) P 2p−1(p) → BGL1(S(p)) → BGL1(R[1/x])

is null. The bottom cell S2p−2 of P 2p−1(p) maps trivially to BGL1(R[1/x]), because
the bottom cell detects α1 (by Remark 4.1.8), and α1 is nullhomotopic in R[1/x].
Therefore, the map (5.3) factors through the top cell S2p−1 of P 2p−1(p). The
resulting map

S2p−1 → BGL1(S(p)) → BGL1(R[1/x])

detects an element of the Toda bracket ⟨p, α1, x⟩, but this contains zero by hypoth-
esis, so is nullhomotopic.

Since the map (5.2) is null, Corollary 2.2.2 and Theorem 2.1.7 implies that there
is a ring map HZp → R[1/x]. In particular, the composite of the map x : Σ|x|R → R
with the unit R → R[1/x] factors as shown:

Σ|x|R
x //

��

R //

��

R[1/x].

HZp ∧ Σ|x|R
x // HZp ∧R

99

The bottom map, however, is null, because x has zero HZp-Hurewicz image. There-
fore, the element x ∈ π∗R[1/x] is null, and hence R[1/x] is contractible. □

Remark 5.4.2. One can prove by a different argument that Proposition 5.4.1 is
true without the assumption that Conjecture D holds when n = 1. At p = 2, this
was shown by Astey in [Ast97, Theorem 1.1].

To discuss the relationship between Theorem A for general n and the nilpo-
tence theorem (which we will expand upon in future work), we embark on a slight
digression. The following proposition describes the construction of some infinite
families.

Proposition 5.4.3. Let R be a height n − 1 spectrum as in the second line of
Table 2, and assume Conjecture E if R = A or B. Then there is an infinite family
σn−1,pk ∈ πpk|vn|−1(R). Conjecture E implies that σn−1,pk lifts to πpk|vn|−1(Z3(R)),
where Z3(R) abusively denotes the E3-center of X(pn − 1) if R = T (n− 1).

Proof. We construct this family by induction on k. The element σn−1,1 is just
σn−1, so assume that we have defined σn−1,pk . The element σn−1,pk ∈ πpk|vn|−1R

defines a map σn−1,pk : Spk|vn| → BGL1(R). When R = T (n − 1), Lemma 3.1.12
(and the inductive hypothesis) implies that the map defined by σn factors through
the map BGL1(X(pn − 1)) → BGL1(T (n− 1)). When R = A or B, Conjecture E
(and the inductive hypothesis) implies that the map defined by σn factors through
the map BGL1(Z3(R)) → BGL1(R). This implies that for all R as in the second
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line of Table 2, the map σn−1,pk : Spk|vn| → BGL1(R) factors through an E1-space,
which we shall just denote by ZR for the purpose of this proof. If we assume
Conjecture E, then we may take ZR = BGL1(Z3(R)).

Therefore, we get a map σn−1,pk : ΩSpk|vn|+1 → BGL1(R) via the composite

ΩSpk|vn|+1 → ZR → BGL1(R).

Since ZR is an E1-space, the map ΩSpk|vn|+1 → ZR is adjoint to a map∨
j≥1

Sjpk|vn|+1 ≃ ΣΩSpk|vn|+1 → BZR;

the source splits as indicated via the James splitting. These splittings are given

by Whitehead products; in particular, the map Spk+1|vn|+1 = Sp(pk|vn|+1)−(p−1) →
BZR is given by the p-fold Whitehead product [σn−1,pk , · · · , σn−1,pk ]. This is divisi-

ble by p, so it yields a map Spk+1|vn| → ZR, and hence a map Spk+1|vn| → BGL1(R)
given by composing with the map ZR → BGL1(R). This defines the desired element
σn−1,pk+1 ∈ πpk+1|vn|−1(R). As the construction makes clear, assuming Conjecture
E and taking ZR = BGL1(Z3(R)) implies that σn−1,pk lifts to πpk|vn|−1(Z3(R)). □

Remark 5.4.4. This infinite family is detected in the 1-line of the ANSS for R
by δ(vkn), where δ is the boundary map induced by the map Σ−1R/p → R. This
is a consequence of the geometric boundary theorem (see [Rav86, Theorem 2.3.4])

applied to the cofiber sequence R
p−→ R → R/p.

Remark 5.4.5. The element σn−1,1 ∈ π2pn−3(R) is precisely σn−1.

Remark 5.4.6. When n = 1, the ring R is the (p-local) sphere spectrum. The
infinite family σn−1,pk is the Adams-Toda α-family: namely, αpk ∈ π2pk(p−1)−1(S)
maps to σ0,pk ∈ π2pk(p−1)−1X(p− 1) under the unit map S → X(p− 1).

We now briefly sketch an argument relating Theorem A to the proof of the
nilpotence theorem; we shall elaborate on this discussion in forthcoming work.

Remark 5.4.7. The heart of the nilpotence theorem is what is called Step III
in [DHS88]; this step amounts to showing that certain self-maps of T (n − 1)-
module skeleta (denoted Gk in [DHS88]) of T (n) are nilpotent. Let us assume
that p > 2 for simplicity. Then these self-maps are given by multiplication by the
p-fold Toda bracket bn,k = ⟨σn−1,pk , · · · , σn−1,pk⟩ at an odd prime p; this lives in

degree p|σn−1,pk | + p − 2 = 2pk(pn − 1) − 2. (When p = 2, the desired element
σn−1,pk is denoted by h in [Hop87, Theorem 3].) It therefore suffices to establish
the nilpotency of the bn,k.

This can be proven through Theorem A via induction on k; we shall assume
Conjecture D and Conjecture E for the remainder of this discussion. The motivation
for this approach stems from the observation that if R is any E3-F2-algebra and
x ∈ π∗(R), then there is a relation Q1(x)

2 = Q2(x
2) (at odd primes, one has

a relation involving the p-fold Toda bracket ⟨Q1(x), · · · , Q1(x)⟩). In our setting,
Proposition 5.4.3 implies that the elements σn−1,k lift to π∗Z3(X(pn − 1)). At
p = 2, one can prove (in the same way that the Cartan relation Q1(x)

2 = Q2(x
2)

is proven) that the construction of this infinite family implies that σ2
n−1,pk+1 can

be described in terms of Q2(σ
2
n−1,pk). At odd primes, there is a similar relation

involving the p-fold Toda bracket defining bn,k. In particular, induction on k implies
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that the bn,k are all nilpotent in π∗Z3(X(pn − 1)) if bn,1 is nilpotent. Note that
|bn,1| = 2pn+1 − 2p− 2.

To argue that bn,1 is nilpotent, one first observes that σn−1b
p
n,1 = 0 in π∗Z3(X(pn−

1)); when n = 0, this follows from the statement that α1β
p
1 = 0 in the sphere. To

show that bn,1 is nilpotent, it suffices to establish that Z3(X(pn − 1))[1/bpn,1] is
contractible; when n = 1, this follows from Proposition 5.4.1. We give a very brief
sketch of this nilpotence for general n, by arguing as in Proposition 5.4.1, and with
a generous lack of precision which will be remedied in forthcoming work.

For notational convenience, we now denote dn,1 = bpn,1, so that |dn,1| = 2pn+2−
2p2 − 2p. It suffices to show that the multiplication-by-dn,1 map

dn,1 : Σ|dn,1|Z3(X(pn − 1)) → Z3(X(pn − 1))[1/dn,1]

is nullhomotopic. Since σn−1 kills dn,1, we know that σn−1 is nullhomotopic in
Z3(X(pn−1))[1/dn,1]. Moreover, the bracket ⟨p, σn−1, 1Z3(X(pn−1))[1/dn,1]⟩ contains
zero. By arguing as in Proposition 5.4.1, we can conclude that the composite

Kn → Ω2P |σn−1|+4 ϕ−→ BGL1(Z3(X(pn − 1))) → BGL1(Z3(X(pn − 1))[1/dn0
])

is nullhomotopic, where the map ϕ is constructed in Step 1 of the proof of The-
orem A. (Recall that the proof of Theorem A shows that the Thom spectrum
(Ω2P |σn−1|+4)ϕ is an E1 ⊗Q1-Z3(X(pn − 1))-algebra such that BP⟨n− 1⟩ splits off
its base change along the map Z3(X(pn−1)) → T (n−1).) It follows from Theorem
2.1.7 that the multiplication-by-dn,1 map factors as

Σ|dn,1|Z3(X(pn − 1))
dn,1 //

��

Z3(X(pn − 1)) //

��

Z3(X(pn − 1))[1/dn,1].

Σ|dn,1|(Ω2P |σn−1|+4)ϕ
dn,1 // (Ω2P |σn−1|+4)ϕ

55

To show that the top composite is null, it therefore suffices to show that the self
map of Kϕ

n defined by dn,1 is nullhomotopic. This essentially follows from the

fact that (Ω2P |σn−1|+4)ϕ is an E1 ⊗ Q1-Z3(X(pn − 1))-algebra: multiplication by
dn,1 is therefore null on Kϕ

n , because dn,1 is built from σn−1 (which is null in

(Ω2P |σn−1|+4)ϕ) via E1-power operations.
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6. Applications

6.1. Splittings of cobordism spectra. The goal of this section is to prove
the following.

Theorem C. Assume that the composite Z3(B) → B → MString(2) is an E3-
map. Then Conjectures D, E, and F imply that there is a unital splitting of the
Ando-Hopkins-Rezk orientation MString(2) → tmf(2).

Remark 6.1.1. We believe that the assumption that the composite Z3(B) → B →
MString(2) is an E3-map is too strong: we believe that it can be removed using
special properties of fibers of charming maps, and we will return to this in future
work.

We only construct unstructured splittings; it seems unlikely that they can be
refined to structured splittings. A slight modification of our arguments should work
at any prime.

Remark 6.1.2. In fact, the same argument used to prove Theorem C shows that if
the composite Z3(A) → A → MSpin(2) is an E3-map, then Conjecture D and Con-
jecture E imply that there are unital splittings of the Atiyah-Bott-Shapiro orienta-
tion MSpin(2) → bo(2). This splitting was originally proved unconditionally (i.e.,

without assuming Conjecture D or Conjecture E) by Anderson-Brown-Peterson in
[ABP67] via a calculation with the Adams spectral sequence.

Remark 6.1.3. The inclusion of the cusp on Mell defines an E∞-map c : tmf → bo
as in [LN14, Theorem 1.2]. The resulting diagram

MString(2) //

��

MSpin(2)

��
tmf(2)

c // bo(2)

commutes (see, e.g., [Dev19b, Lemma 6.4]). The splitting s : tmf(2) → MString(2)
of Theorem C defines a composite

tmf(2)
s−→ MString(2) → MSpin(2) → bo(2)

which agrees with c.

Remark 6.1.4. The Anderson-Brown-Peterson splitting implies that if X is any
compact space, then the Atiyah-Bott-Shapiro Â-genus (i.e., the index of the Dirac
operator in families) MSpin∗(X) → bo∗(X) is surjective. Similarly, if the composite
Z3(B) → B → MString is an E3-map, then Conjectures D, E, and F imply that the
Ando-Hopkins-Rezk orientation (i.e., the Witten genus in families) MString∗(X) →
tmf∗(X) is also surjective.

Remark 6.1.5. In [Dev19b], we proved (unconditionally) that the map π∗MString →
π∗tmf is surjective. Our proof proceeds by showing that the map π∗B → π∗tmf
is surjective via arguments with the Adams-Novikov spectral sequence and by ex-
ploiting the E1-ring structure on B to lift the powers of ∆ living in π∗tmf.

The discussion preceding [MR09, Remark 7.3] (in the arXiv version of the
document) implies that for a particular model of tmf0(3), we have:
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Corollary 6.1.6. Assume that the composite Z3(B) → B(2) → MString(2) is an

E3-map. Then Conjectures D, E, and F imply that Σ16tmf0(3)
∧
2 is a summand of

MString∧2 .

We now turn to the proof of Theorem C.

Proof of Theorem C. First, note that such a splitting exists after rational-
ization. Indeed, it suffices to check that this is true on rational homotopy; since the
orientations under considerations are E∞-ring maps, the induced map on homotopy
is one of rings. It therefore suffices to lift the generators.

We now show that the generators of π∗tmf⊗Q ∼= Q[c4, c6] lift to π∗MString⊗Q.
Although one can argue this by explicitly constructing manifold representatives
(as is done for c4 in [Dev19b, Corollary 6.3]), it is also possible to provide a
more homotopy-theoretic proof: the elements c4 and c6 live in dimensions 8 and
12 respectively, and the map MString → tmf is known to be an equivalence in
dimensions ≤ 15 by [Hil, Theorem 2.1]. It follows that the same is true rationally,
so c4 and c6 indeed lift to π∗MString ⊗Q, as desired.

We will now construct a splitting after p-completion where p = 2. By Corollary
5.1.6, we obtain a unital map tmf ≃ Θ(B) → MString upon p-completion which
splits the orientation MString → Θ(B) because:

(a) the map Z3(B) → B → MString is an E3-ring map (by assumption).
(b) the element σ2 vanishes in π13MString(2) (because π13MString(2)

∼= π13tmf(2) ∼=
0),

(c) and the Toda bracket ⟨2, σ2, 1MString(2)
⟩ ⊆ π∗MString(2) contains zero be-

cause π14MString(2)
∼= π14tmf(2), and the corresponding bracket ⟨2, σ2, 1MString(2)

⟩ ⊆
π14tmf(2) detects v3, hence contains zero.

To obtain a map tmf(p) → MString(p), we need to show that the induced map

tmf⊗Q → tmf∧p ⊗Q → MString∧p ⊗Q agrees with the rational splitting constructed
in the previous paragraph. However, this is immediate from the fact that the
splittings tmf∧p → MString∧p are constructed to be equivalences in dimensions ≤ 15,
and the fact that the map out of tmf⊗Q is determined by its effect on the generators
c4 and c6. □

Remark 6.1.7. The proof recalled in Remark 1.1.2 of Thom’s splitting of MO
proceeded essentially unstably: there is an E2-map Ω2S3 → BO of spaces over
BGL1(S), whose Thomification yields the desired E2-map HF2 → MO. This ar-
gument also works for MSO: there is an E2-map Ω2S3⟨3⟩ → BSO of spaces over
BGL1(S), whose Thomification yields the desired E2-map HZ → MSO. One might
hope for the existence of a similar unstable map which would yield Theorem C.
We do not know how to construct such a map. To illustrate the difficulty, let us
examine how such a proof would work; we will specialize to the case of MString,
but the discussion is the same for MSpin.

According to Theorem A, Conjecture D and Conjecture E imply that there is a
map K3 → BGL1(B) whose Thom spectrum is equivalent to tmf. There is a map
BN → B2String, whose fiber we will denote by Q. Then there is a fiber sequence

N → BString → Q,

and so Proposition 2.1.6 implies that there is a map Q → BGL1(B) whose Thom
spectrum is MString. Theorem C would follow if there was a map f : K3 → Q of
spaces over BGL1(B), since Thomification would produce a map tmf → MString.
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Conjecture D reduces the construction of f to the construction of a map
Ω2P 17(2) → Q. This map would in particular imply the existence of a map
P 15(2) → Q (and would be equivalent to the existence of such a map if Q was
a double loop space), which in turn stems from a 2-torsion element of π14(Q). The
long exact sequence on homotopy runs

· · · → π14(BString) → π14(Q) → π13(N) → π13(BString) → · · ·
Bott periodicity states that π13BString ∼= π14BString ∼= 0, so we find that π14(Q) ∼=
π13(N). The desired 2-torsion element of π14(Q) is precisely the element of π13(N)
described in Remark 3.2.24. Choosing a particular nullhomotopy of twice this 2-
torsion element of π14(Q) produces a map g : P 15(2) → Q. To extend this map
over the double suspension P 15(2) → Ω2P 17(2), it would suffice to show that there

is a double loop space Q̃ with a map Q̃ → Q such that g factors through Q̃.
Unfortunately, we do not know how to prove such a result; this is the unstable

analogue of Conjecture E. In fact, such an unstable statement would bypass the need
for Conjecture E in Theorem A. (One runs into the same obstruction for MSpin,
except with the fiber of the map S5 → B2Spin.) These statements are reminiscent
of the conjecture (see Section 4.1) that the fiber Wn = fib(S2n−1 → Ω2S2n+1) of
the double suspension admits the structure of a double loop space.

Remark 6.1.8. The following application of Theorem C was suggested by Mike
Hopkins. In [HH92], the Anderson-Brown-Peterson splitting is used to show that
the Atiyah-Bott-Shapiro orientation MSpin → KO induces an isomorphism

MSpin∗(X)⊗MSpin∗ KO∗
∼=−→ KO∗(X)

of KO∗-modules for all spectra X. In future work, we shall show that Theorem
C can be used to prove the following height 2 analogue of this result: namely,
Conjectures D, E, and F imply that the Ando-Hopkins-Rezk orientation MString →
Tmf induces an isomorphism

(6.1) MString∗(X)⊗MString∗ Tmf∗
∼=−→ Tmf∗(X)

of Tmf∗-modules for all spectra X. The K(1)-analogue of this isomorphism was
obtained by Laures in [Lau04].

6.2. Wood equivalences. The Wood equivalence states that bo ∧ Cη ≃ bu.
There are generalizations of this equivalence to tmf (see [Mat16]); for instance,
there is a 2-local 8-cell complex DA1 whose cohomology is isomorphic to the double
of A(1) as an A(2)-module such that tmf(2) ∧DA1 ≃ tmf1(3) ≃ BP⟨2⟩. Similarly,

if X3 denotes the 3-local 3-cell complex S0 ∪α1
e4 ∪2α1

e8, then tmf(3) ∧ X3 ≃
tmf1(2) ≃ BP⟨2⟩ ∨ Σ8BP⟨2⟩. We will use the umbrella term “Wood equivalence”
to refer to equivalences of this kind.

Our goal in this section is to revisit these Wood equivalences using the point of
view stemming from Theorem A. In particular, we propose that these equivalences
are suggested by the existence of certain EHP sequences; we will greatly expand on
this in a forthcoming document. We find this to be a rather beautiful connection
between stable and unstable homotopy theory.

The first Wood-style result was proved in Proposition 3.2.6. The next result,
originally proved in [Mah79, Section 2.5] and [DM81, Theorem 3.7], is the simplest
example of a Wood-style equivalence which is related to the existence of certain EHP
sequences.
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Proposition 6.2.1. Let S//η = X(2) (resp. S//2) denote the E1-quotient of S by η
(resp. 2). If Y = Cη ∧ S/2 and A1 is a spectrum whose cohomology is isomorphic
to A(1) as a module over the Steenrod algebra, then there are equivalences

A ∧ Cη ≃ S//η, A ∧ Y ≃ S//2, A ∧A1 ≃ y(1)/v1

of A-modules.

Remark 6.2.2. Proposition 6.2.1 implies the Wood equivalence bo ∧ Cη ≃ bu.
Although this implication is already true before 2-completion, we will work in the
2-complete category for convenience. Recall that Theorem A states that Conjecture
D and Conjecture E imply that there is a map µ : K2 → BGL1(A) whose Thom
spectrum is equivalent to bo (as left A-modules). Moreover, the Thom spectrum of

the composite K2
µ−→ BGL1(A) → BGL1(T (1)) is equivalent to BP⟨1⟩. Since this

Thom spectrum is the base-change Kµ
2 ∧A T (1), and Proposition 6.2.1 implies that

T (1) = X(2) ≃ A ∧ Cη, we find that

BP⟨1⟩ ≃ Kµ
2 ∧A (A ∧ Cη) ≃ Kµ

2 ∧ Cη ≃ bo ∧ Cη,

as desired. Similarly, noting that S//2 = y(1), we find that Proposition 6.2.1 also
proves the equivalence bo ∧ Y ≃ k(1).

Remark 6.2.3. The argument of Remark 6.2.2 in fact proves that Theorem A for
A implies Theorem A for T (1), yZ(1), and y(1).

Proof of Proposition 6.2.1. For the first two equivalences, it suffices to
show that A ∧ Cη ≃ S//η and that S//η ∧ S/2 ≃ S//2. We will prove the first
statement; the proof of the second statement is exactly the same. There is a map
Cη → S//η given by the inclusion of the 2-skeleton. There is also an E1-ring
map A → S//η given as follows. The multiplication on S//η defines a unital map
Cη ∧ Cη → S//η. But since the Toda bracket ⟨η, 2, η⟩ contains ν, there is a unital
map Cν → Cη∧Cη. This supplies a unital map Cν → S//η, which, by the universal
property of A = S//ν (via Theorem 2.1.7), extends to an E1-ring map A → S//η.

For the final equivalence, it suffices to construct a map A1 → y(1)/v1 for which
the induced map A ∧ A1 → y(1)/v1 gives an isomorphism on mod 2 homology.
Since A1 may be obtained as the cofiber of a v1-self map Σ2Y → Y , it suffices to
observe that the the following diagram commutes; our desired map is the induced
map on vertical cofibers:

Σ2Y

v1

��

// Σ2y(1)

v1

��
Y // y(1).

□

Remark 6.2.4. There are EHP sequences

S1 → ΩS2 → ΩS3, S2 → ΩS3 → ΩS5.

Recall that S/2, Cη, S//2, S//η = X(2), and A are Thom spectra over S1, S2,
ΩS2, ΩS3, and ΩS5 respectively. Proposition 2.1.6 therefore implies that there are
maps f : ΩS3 → BAut(S/2) and g : ΩS5 → BAut(Cη) whose Thom spectra are
equivalent to S//2 and S//η, respectively. The maps f and g define local systems of
spectra over ΩS3 and ΩS5 whose fibers are equivalent to S/2 and Cη (respectively),
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and one interpretation of Proposition 6.2.1 is that these local systems in fact factor
as

ΩS3 η−→ BGL1(S) → BAut(S/2), ΩS5 ν−→ BGL1(S) → BAut(Cη).

Proposition 6.2.1 is an immediate consequence of these factorizations. We argue
this for the first case in Remark 6.2.5, and for the second in Remark 6.2.6, thereby
giving an alternative EHP-based argument for Proposition 6.2.1.

Remark 6.2.5. The first EHP sequence in Remark 6.2.4 splits via the Hopf map
S3 → S2. The map f : ΩS3 → BAut(S/2) in fact factors through the dotted map
in the following diagram:

S2 // ΩS2

��

// ΩS3

��ww
BGL1(S) // BAut(S/2).

Indeed, the composite ΩS3 → ΩS2 → BGL1(S) is a loop map, and therefore is
determined by the composite ϕ : S3 → S2 → B2GL1(S). Since the map S2 →
B2GL1(S) detects the element −1 ∈ π0(S)×, the map ϕ does in fact determine a
unit multiple of η. This implies the desired claim.

Remark 6.2.6. The map g : ΩS5 → BAut(Cη) from Remark 6.2.4 factors through
BGL1(S). To see this, let us begin with the following observation: view BU and BSU
as H-spaces via the tensor product of vector bundles. Then the map BSU×CP∞ →
BU classifying V⊠L, with V the universal SU-bundle over BSU and L the universal
line bundle over BU, is an equivalence of H-spaces. In particular, there is a fiber
sequence

CP∞ → BU → BSU.

The map ΩS3 → BGL1(S) defining T (1) factors as

ΩS3 → BU
J−→ BGL1(S);

similarly, the map ΩS5 → BGL1(S) defining A factors as

ΩS5 → BSU
J−→ BGL1(S).

These factorizations make the following diagram of fiber sequences commute:

S2 //

��

ΩS3 //

��

ΩS5

��
CP∞ // BU // BSU.

The map ΩS5 → BAut(Cη) was defined using Proposition 2.1.6. It then follows
from the splitting of the bottom fiber sequence in the above diagram that the dotted
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map exists in the followng diagram:

S2 //

��

ΩS3 //

��

ΩS5

��
CP∞ //

%%

BU //

J

��

BSU

��Jww
BGL1(S) // BAut(Cη).

The composite

ΩS5 → BSU
J−→ BGL1(S) → BAut(Cη)

is g, giving our desired factorization.

Next, we have the following result at height 2:

Proposition 6.2.7. Let DA1 denote the double of A1 (see [Mat16]). There are
2-complete equivalences

B ∧DA1 ≃ T (2), B ∧ Z ≃ y(2), B ∧A2 ≃ y(2)/v2,

where Z is the spectrum “ 1
2A2” from [MT94, BE16]3, and A2 is a spectrum whose

cohomology is isomorphic to A(2) as a module over the Steenrod algebra.

Remark 6.2.8. Arguing as in Remark 6.2.2 shows that Proposition 6.2.7 and
Theorem A imply the Wood equivalences

tmf ∧DA1 ≃ tmf1(3) = BP⟨2⟩, tmf ∧ Z ≃ k(2), tmf ∧A2 ≃ HF2.

Remark 6.2.9. Exactly as in Remark 6.2.3, the argument of Remark 6.2.8 in fact
proves that Theorem A for B implies Theorem A for T (2), yZ(2), and y(2).

Remark 6.2.10. The telescope conjecture [Rav84, Conjecture 10.5], which we
interpet as stating that Ln-localization is the same as Lf

n-localization, is known
to be true at height 1. For odd primes, it was proved by Miller in [Mil81], and
at p = 2 it was proved by Mahowald in [Mah81a, Mah82]. Mahowald’s ap-
proach was to calculate the telescopic homotopy of the type 1 spectrum Y . In
[MRS01], Mahowald-Ravenel-Shick proposed an approach to disproving the tele-
scope conjecture at height 2: they suggest that for n ≥ 2, the Ln-localization and
the vn-telescopic localization of y(n) have different homotopy groups. They show,
however, that the L1-localization and the v1-telescopic localization of y(1) agree,
so this approach (thankfully) does not give a counterexample to the telescope con-
jecture at height 1.

Motivated by Mahowald’s approach to the telescope conjecture, Behrens-Beaudry-
Bhattacharya-Culver-Xu study the v2-telescopic homotopy of Z in [BBB+19], with
inspiration from the Mahowald-Ravenel-Shick approach. Propositions 6.2.1 and
6.2.7 can be used to relate these two (namely, the finite spectrum and the Thom
spectrum) approaches to the telescope conjecture. As in Section 6.1, we will let R
denote A or B. Moreover, let F denote Y or Z (depending on what R is), and let
R′ denote y(1) or y(2) (again depending on what R is), so that R ∧ F = R′ by
Propositions 6.2.1 and 6.2.7. Then:

3In the former source, Z is denoted by M .
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Corollary 6.2.11. If the telescope conjecture is true for F (and hence any type 1
or 2 spectrum) or R, then it is true for R′.

Proof. Since Ln- and Lf
n-localizations are smashing, we find that if the tele-

scope conjecture is true for F or R, then Propositions 6.2.1 and 6.2.7 yield equiva-
lences

Lf
nR

′ ≃ R ∧ Lf
nF ≃ R ∧ LnF ≃ LnR

′.

□

Finally, we prove Proposition 6.2.7.

Proof of Proposition 6.2.7. We first construct mapsB → T (2) andDA1 →
T (2). The top cell of DA1 is in dimension 12, and the map T (2) → BP is an equiv-
alence in dimensions ≤ 12. It follows that constructing a map DA1 → T (2) is
equivalent to constructing a map DA1 → BP. However, both BP and DA1 are
concentrated in even degrees, so the Atiyah-Hirzebruch spectral sequence collapses,
and we find that BP∗(DA1) ∼= H∗(DA1; BP∗). The generator in bidegree (0, 0)
produces a map DA1 → T (2); its effect on homology is the additive inclusion
F2[ζ

2
1 , ζ

2
2 ]/(ζ

8
1 , ζ

4
2 ) → F2[ζ

2
1 , ζ

2
2 ].

The map B → T (2) may be defined via the universal property of Thom spec-
tra from Section 2.1 and Remark 3.2.20. Its effect on homology is the inclusion
F2[ζ

8
1 , ζ

4
2 ] → F2[ζ

2
1 , ζ

2
2 ]. We obtain a map B ∧DA1 → T (2) via the multiplication

on T (2), and this induces an isomorphism in mod 2 homology.
For the second equivalence, we argue similarly: the map B → T (2) defines

a map B → T (2) → y(2). Next, recall that Z is built through iterated cofiber
sequences:

Σ2Y
v1−→ Y → A1, Σ5A1 ∧ Cν

σ1−→ A1 ∧ Cν → Z.

As an aside, we note that the element σ1 is intimately related to the element
discussed in Example 3.1.14; namely, it is given by the self-map of A1 ∧ Cν given
by smashing A1 with the following diagram:

Σ5Cν

σ1

++

// Σ5A
σ1∧id // A ∧A // A

Cν.

OO

Using these cofiber sequences and Proposition 3.2.6, one obtains a map Z → y(2),
which induces the additive inclusion F2[ζ1, ζ2]/(ζ

8
1 , ζ

4
2 ) → F2[ζ1, ζ2] on mod 2 ho-

mology. The multiplication on y(2) defines a map B ∧Z → y(2), which induces an
isomorphism on mod 2 homology.

For the final equivalence, it suffices to construct a map A2 → y(2)/v2 for which
the induced map B ∧ A2 → y(2)/v2 gives an isomorphism on mod 2 homology.
Since A2 may be obtained as the cofiber of a v2-self map Σ6Z → Z, it suffices to
observe that the the following diagram commutes; our desired map is the induced
map on vertical cofibers:

Σ6Z

v2

��

// Σ6y(2)

v2

��
Z // y(2).

□
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Arguing exactly as in the proof of Proposition 6.2.7 shows the following result
at the prime 3:

Proposition 6.2.12. Let X3 denote the 8-skeleton of T (1) = S//α1. There are
3-complete equivalences

B ∧X3 ≃ T (2) ∨ Σ8T (2), B ∧X3 ∧ S/(3, v1) ≃ y(2) ∨ Σ8y(2).

In forthcoming work, we will discuss the relation between Proposition 6.2.7 and
EHP sequences, along the lines of Remark 6.2.4.
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7. C2-equivariant analogue of Corollary B

Our goal in this section is to study a C2-equivariant analogue of Corollary B
at height 1. The odd primary analogue of this result is deferred to the future; it is
considerably more subtle.

7.1. C2-equivariant analogues of Ravenel’s spectra. In this section, we
construct the C2-equivariant analogue of T (n) for all n. We 2-localize everywhere
until mentioned otherwise. There is a C2-action on ΩSU(n) given by complex con-
jugation, and the resulting C2-space is denoted ΩSU(n)R. Real Bott periodicity
gives a C2-equivariant map ΩSU(n)R → BUR whose Thom spectrum is the (gen-
uine) C2-spectrum X(n)R. This admits the structure of an Eρ-ring, since it is the
Thom spectrum of an Eρ-map ΩρBσSU(n)R → ΩρBρBUR ≃ ΩρBSUR. As in the
nonequivariant case, the equivariant Quillen idempotent on MUR restricts to one on
X(m)R, and therefore defines a summand T (n)R of X(m)R for 2n ≤ m ≤ 2n+1−1.
Again, this summand admits the structure of an E1-ring.

Construction 7.1.1. There is an equivariant fiber sequence

ΩSU(n)R → ΩSU(n+ 1)R → ΩSnρ+1,

where ρ is the regular representation of C2; the equivariant analogue of Proposition
2.1.6 then shows that there is a map ΩSnρ+1 → BGL1(X(n)R) (detecting an ele-
ment χn ∈ πnρ−1X(n)R) whose Thom spectrum is X(n+1)R. Here, BGL1(X(n)R)
is the delooping of the Eρ-space GL1(X(n)R), and the C2-equivariant notion of
Thom spectrum is taken in the sense of [HHK+20, Theorem 3.2]. (The con-
structions from loc. cit. can be verified to go through for equivariant maps to
BGL1(X(n)R); for example, when n = ∞, the idea of taking Thom spectra for an
equivariant map to BGL1(MUR) was already used in [HS20, Section 3].)

If σ̃n denotes the image of the element χ2n+1ρ−1 in π(2n+1−1)ρ−1T (n)R, then
we have a C2-equivariant analogue of Lemma 3.1.12:

Lemma 7.1.2. The Thom spectrum of the map ΩS(2n+1−1)ρ+1 → BGL1(X(2n+1−
1)R) detecting σ̃n is a direct sum of shifts of T (n+ 1)R.

Example 7.1.3. For instance, T (1)R = X(2)R is the Thom spectrum of the map
ΩSρ+1 → BUR; upon composing with the equivariant J-homomorphism BUR →
BGL1(S), this detects the element η̃ ∈ πσS, and the extension of the map Sρ →
BGL1(S) to ΩSρ+1 uses the E1-structure on BGL1(S). The case of X(2)R exhibits
a curious property: Sρ+1 is the loop space ΩσHP∞

R , and there are equivalences (see
[HW20, Proposition 3.4 and Proposition 3.6])

ΩSρ+1 ≃ Ωσ+1HP∞
R ≃ Ωσ(ΩHP∞

R ).

However, ΩHP∞
R ≃ Sρ+σ, so ΩSρ+1 = ΩσSρ+σ. The map ΩσSρ+σ → BGL1(S)

still detects the element η̃ ∈ πσS on the bottom cell, but the extension of the
map Sρ → BGL1(S) to ΩσSρ+σ is now defined via the Eσ-structure on BGL1(S).
The upshot of this discussion is that X(2)R is not only the free E1-ring with a
nullhomotopy of η̃, but also the free Eσ-algebra with a nullhomotopy of η̃.

Warning 7.1.4. Unlike the nonequivariant setting, the element η̃ ∈ πσS is neither
torsion nor nilpotent. This is because its geometric fixed points is ΦC2 η̃ = 2 ∈ π0S;
see [DI13, Proposition C.5], although note that the orientations chosen there are
the opposite of ours. Briefly, the map η̃ is obtained by ρ-desuspending the unstable



50 S. K. DEVALAPURKAR

equivariant Hopf map Sρ+σ = C2−{0} → CP 1 = Sρ, whose homotopy fiber is Sσ.

In other words, there is a fiber sequence Sσ → Sρ+σ η̃−→ Sρ. On geometric fixed
points, this produces the fiber sequence S0 = C2 → S1 → S1, which forces the map
ΦC2 η̃ to have degree 2 (or −2, depending on the choice of orientation).

Example 7.1.5. Consider the element σ̃1 ∈ π3ρ−1T (1)R. The underlying nonequiv-
ariant element of π5T (1)R is simply σ1. To determine ΦC2 σ̃1 ∈ π2Φ

C2T (1)R, we
first note that ΦC2T (1)R is the Thom spectrum of the map ΦC2 η̃ : ΦC2ΩSρ+1 →
BGL1(S). Since ΦC2ΩSρ+1 = ΩS2 and ΦC2 η̃ = 2, we find that ΦC2T (1)R is the
E1-quotient S//2. The element ΦC2 σ̃1 ∈ π2S//2 ∼= π2S/2 is simply a map S2 → S/2
which is η on the top cell. Such a map exists because 2η = 0.

As an aside, we mention that there is a C2-equivariant lift of the spectrum A:

Definition 7.1.6. Let AC2
denote the Thom spectrum of the map ΩS2ρ+1 →

BGL1(S) defined by the extension of the map S2ρ → BGL1(S) which detects the
equivariant Hopf map ν̃ ∈ π2ρ−1S.

Remark 7.1.7. The underlying spectrum of AC2
is A. To determine the geo-

metric fixed points of AC2
, ΦC2AC2

is the Thom spectrum of the map ΦC2 ν̃ :

ΦC2ΩS2ρ+1 → BGL1(S). We claim that Φ̃C2 ν̃ = η; indeed, the map ν̃ is obtained
by 2ρ-desuspending the unstable equivariant map S4ρ−1 = H2−{0} → HP 1 = S2ρ.
The homotopy fiber of this map is S2ρ−1 = Sρ+σ, so that there is an equivariant
fiber sequence Sρ+σ → S4ρ−1 → S2ρ. On geometric fixed points, we obtain a fiber
sequence S1 → S3 → S2, which implies that ΦC2 ν̃ be identified with the Hopf
fibration S3 → S2. Now, since ΦC2ΩS2ρ+1 = ΩS3, we find that ΦC2AC2 = T (1).
In particular, AC2

may be thought of as the free C2-equivariant E1-ring with a
nullhomotopy of ν̃.

Example 7.1.8. The element σ̃1 lifts to π3ρ−1AC2 . Indeed, Remark 3.2.17 works
equivariantly too: the equivariant Hopf map S3ρ−1 → S2ρ defines a composite
S3ρ−1 → S2ρ → ΩS2ρ+1. The composite S3ρ−1 → ΩS2ρ+1 → BSUR is null, since
π3ρ−1BSUR = 0. It follows that upon Thomification, the map S3ρ−1 → ΩS2ρ+1

defines an element σ̃′
1 of π3ρ−1AC2 . In order to show that this element indeed

deserves to be called σ̃1, we use Proposition 7.1.9. The map AC2 → T (1)R from
the proposition induces a map π3ρ−1AC2

→ π3ρ−1T (1)R, and we need to show that
the image of σ̃′

1 ∈ π3ρ−1AC2
is in fact σ̃1. By Example 7.1.5, it suffices to observe

that the underlying nonequivariant map corresponding to σ̃′
1 ∈ π3ρ−1T (1)R is σ1,

and that the geometric fixed points ΦC2 σ̃
′
1 ∈ π2S//2 is the lift of η appearing in

Example 7.1.5.

We now prove the proposition used above.

Proposition 7.1.9. There is a genuine C2-equivariant E1-map AC2
→ T (1)R.

Proof. By Remark 7.1.7, it suffices to show that ν̃ = 0 ∈ π3ρ−1T (1)R. The
underlying map is null, because ν = 0 ∈ π5T (1). The geometric fixed points are
also null, because ΦC2 ν̃ = η is null in π2Φ

C2T (1)R = π2S//2. Therefore, ν̃ is null
in π3ρ−1T (1)R. □

In fact, it is easy to prove the following analogue of Proposition 6.2.1:

Proposition 7.1.10. There is a C2-equivariant equivalence AC2
∧ Cη̃ ≃ T (1)R.
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Proof. There are maps AC2
→ T (1)R and Cη̃ → T (1)R, which define a map

AC2 ∧ Cη̃ → T (1)R via the multiplication on T (1)R. This map is an equivalence
on underlying by Proposition 6.2.1, and on geometric fixed points induces the map
T (1) ∧ S/2 → S//2. This was also proved in the course of Proposition 6.2.1. □

Remark 7.1.11. As in Remark 6.2.2, one might hope that this implies the C2-
equivariant Wood equivalence boC2

∧ Cη̃ ≃ buR via some equivariant analogue of
Theorem A.

Remark 7.1.12. The equivariant analogue of Remark 6.2.4 remains true: the
equivariant Wood equivalence of Proposition 7.1.10 stems from the EHP sequence
Sρ → ΩSρ+1 → ΩS2ρ+1. To prove the existence of such a fiber sequence, we use
[DH21, Construction 4.26] to get the Hopf map h : ΩSρ+1 → ΩS2ρ+1, as well
as a nullhomotopy of the composite Sρ → ΩSρ+1 → ΩS2ρ+1. In particular, if
F = fib(h), there is an equivariant map Sρ → F . We claim that this map is
an equivalence: it suffices to prove that Sρ → F is an equivalence on underlying
and on geometric fixed points, since these functors preserve homotopy limits and
colimits, and these functors are jointly conservative. The desired equivalence on
underlying spaces follows from the classical EHP sequence S2 → ΩS3 → ΩS5, and
the equivalence on geometric fixed points follows from the splitting ΩS2 ≃ S1×ΩS3.

7.2. The C2-equivariant analogue of Corollary B at n = 1. Recall (see
[HK01]) that there are indecomposable classes vn ∈ π(2n−1)ρBPR; as in Theorem
3.1.5, these lift to classes in π⋆T (m)R if m ≥ n. The main result of this section is
the following:

Theorem 7.2.1. There is a map ΩρS2ρ+1 → BGL1(T (1)R) detecting an indecom-
posable in πρT (1)R on the bottom cell, whose Thom spectrum is HZ.

Note that, as with Corollary B at n = 1, this result is unconditional. The
argument is exactly as in the proof of Corollary B at n = 1, with practically no
modifications. We need the following analogue of Theorem 2.2.1, originally proved
in [BW18, HW20].

Proposition 7.2.2 (Behrens-Wilson, Hahn-Wilson). Let p be any prime, and let λ
denote the 2-dimensional standard representation of Cp on C. The Thom spectrum
of the map ΩλSλ+1 → BGL1(S

0) extending the map 1 − p : S1 → BGL1(S
0) is

equivalent to HFp as an Eλ-ring. Moreover, if Sλ+1⟨λ + 1⟩ denotes the (λ + 1)-

connected cover of Sλ+1 (i.e., the fiber of the map Sλ+1 → Ω∞Σλ+1HZ), then the
Thom spectrum of the induced map ΩλSλ+1⟨λ + 1⟩ → BGL1(S

0) is equivalent to
HZ as an Eλ-ring.

We can now prove Theorem 7.2.1.

Proof of Theorem 7.2.1. In [HW20], the authors prove that there is an
equivalence of C2-spaces between ΩλSλ+1 and ΩρSρ+1, and that HF2 is in fact

the Thom spectrum of the induced map ΩρSρ+1 → BGL1(S
0) detecting −1. Since

both ΩρSρ+1⟨ρ+ 1⟩ and ΩλSλ+1⟨λ+ 1⟩ are defined as fibers of maps to S1 which
are degree one on the bottom cell, Hahn and Wilson’s equivalence lifts to a C2-
equivariant equivalence ΩρSρ+1⟨ρ + 1⟩ ≃ ΩλSλ+1⟨λ + 1⟩, and we find that HZ is
the Thom spectrum of the map ΩρSρ+1⟨ρ+ 1⟩ → BGL1(S

0).
Since T (1)R is the Thom spectrum of the composite map ΩSρ+1 → ΩρSρ+1⟨ρ+

1⟩ → BGL1(S
0) detecting η̃ on the bottom cell of the source, it follows from the
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C2-equivariant analogue of Proposition 2.1.6 and the above discussion that it is
sufficient to define a fiber sequence

ΩSρ+1 → ΩρSρ+1⟨ρ+ 1⟩ → ΩρS2ρ+1,

and check that the induced map ΩρS2ρ+1 → BGL1(T (1)R) detects an indecompos-
able element of πρT (1)R. See Remark 4.1.4 for the nonequivariant analogue of this
fiber sequence.

Since there is an equivalence ΩSρ+1 ≃ ΩσSρ+σ, it suffices to prove that there
is a fiber sequence

(7.1) Sρ+σ → ΩSρ+1⟨ρ+ 1⟩ → ΩS2ρ+1;

taking σ-loops produces the desired fiber sequence. The fiber sequence (7.1) can
be obtained by taking vertical fibers in the following map of fiber sequences

Sρ //

��

ΩSρ+1 //

��

ΩS2ρ+1

��
CP∞

R CP∞
R

// ∗.

Here, the top horizontal fiber sequence is the EHP fiber sequence

Sρ → ΩSρ+1 → ΩS2ρ+1.

To identify the fibers, note that there is the Hopf fiber sequence

Sρ+σ η̃−→ Sρ → CP∞
R .

The fiber of the middle vertical map is ΩSρ+1⟨ρ+1⟩ via the definition of Sρ+1⟨ρ+1⟩
as the homotopy fiber of the map Sρ+1 → BCP∞

R .
It remains to show that the map ΩρS2ρ+1 → BGL1(T (1)R) detects an inde-

composable element of πρT (1)R. Indecomposability in πρT (1)R ∼= πρBPR is the
same as not being divisible by 2, so we just need to show that the dotted map in
the following diagram does not exist:

Sρ+1

E2

��

2

&&
ΩρS2ρ+1 //

��

Sρ+1

xx
BGL1(T (1)R)

If this factorization existed, there would be an orientation HZ → T (1)R, which is
absurd. □

We now explain why we do not know how to prove the equivariant analogue of
Corollary B at higher heights. One could propose an equivariant analogue of Con-
jecture D, and such a conjecture would obviously be closely tied with the existence
of some equivariant analogue of the work of Cohen-Moore-Neisendorfer. We do not
know if any such result exists, but it would certainly be extremely interesting.

Suppose that one wanted to prove a result like Corollary B, stating that the
equivariant analogues of Conjecture D and Conjecture E imply that there is a
map ΩρS2nρ+1 → BGL1(T (n)R) detecting an indecomposable in π(2n−1)ρT (n)R
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on the bottom cell, whose Thom spectrum is BP⟨n− 1⟩R. One could then try to
run the same proof as in the nonequivariant case by constructing a map from the
fiber of a charming map ΩρS2nρ+1 → S(2n−1)ρ+1 to BGL1(T (n − 1)R), but the
issue comes in replicating Step 1 of Section 5.2: there is no analogue of Lemma
3.1.16, since the equivariant element σ̃n ∈ π⋆T (n) is neither torsion nor nilpotent.
See Warning 7.1.4. This is intimately tied with the failure of an analogue of the
nilpotence theorem in the equivariant setting. In future work, we shall describe a
related project connecting the T (n) spectra to the Andrews-Gheorghe-Miller wn-
periodicity in C-motivic homotopy theory (see [AM17, Ghe17, Kra17]).

However, since there is a map ΩλSλ+1⟨λ + 1⟩ → BGL1(S) as in Proposition
7.2.2, there may nevertheless be a way to construct a suitable map from the fiber of
a charming map ΩρS2nρ+1 → S(2n−1)ρ+1 to BGL1(T (n−1)R). Such a construction
would presumably provide a more elegant construction of the nonequivariant map
used in the proof of Theorem A.
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8. Future directions

In this section, we suggest some directions for future investigation. This is
certainly not an exhaustive list; there are numerous questions we do not know how
to address that are spattered all over this document, but we have tried to condense
some of them into the list below. We have tried to order the questions in order of
our interest in them. We have partial progress on many of these questions.

(a) Some obvious avenues for future work are the conjectures studied in this
article: Conjectures D, E, F, and 3.1.7. Can the E3-assumption in the
statement of Theorem C be removed?

(b) One of the Main GoalsTM of this project is to rephrase the proof of the
nilpotence theorem from [DHS88, HS98]. As mentioned in Remark 2.2.3,
the Hopkins-Mahowald theorem for HFp immediately implies the nilpo-
tence theorem for simple p-torsion classes in the homotopy of a homotopy
commutative ring spectrum (see also [Hop84]). We will expand on the
relation between the results of this article and the nilpotence theorem in
forthcoming work; see Remark 5.4.7 for a sketch.

From this point of view, Theorem A is very interesting: it connects
torsion in the unstable homotopy groups of spheres (via Cohen-Moore-
Neisendorfer) to nilpotence in the stable homotopy groups of spheres. We
are not sure how to do so, but could the Cohen-Moore-Neisendorfer bound
for the exponents of unstable homotopy groups of spheres be used to ob-
tain bounds for the nilpotence exponent of the stable homotopy groups of
spheres?

(c) It is extremely interesting to contemplate the interaction between unstable
homotopy theory and chromatic homotopy theory apparent in this article.
Connections between unstable homotopy theory and the chromatic pic-
ture have appeared elsewhere in the literature (e.g., in [AM99, Aro98,
Mah82, MT94]), but their relationship to the content of this project is
not clear to me. It would be interesting to have this clarified. One näıve
hope is that such connection could stem from a construction of a charming
map (such as the Cohen-Moore-Neisendorfer map) via Weiss calculus.

(d) Let R denote S or A. The map R → Θ(R) is an equivalence in dimensions
< |σn|. Moreover, the Θ(R)-based Adams-Novikov spectral sequence has
a vanishing line of slope 1/|σn| (see [Mah81a] for the case R = A). Can
another proof of this vanishing line be given using general arguments in-
volving Thom spectra? We have some results in this direction which we
shall address in future work.

(e) The unit maps from each of the Thom spectra on the second line of Table
1 to the corresponding designer spectrum on the third line are surjective
on homotopy. In the case of tmf, this requires some computational effort
to prove, and has been completed in [Dev19b]. This behavior is rather
unexpected: in general, the unit map from a structured ring to some struc-
tured quotient will not be surjective on homotopy. Is there a conceptual
reason for this surjectivity?

(f) In [BBB+19], the tmf-resolution of a certain type 2 spectrum Z is studied.
Mahowald uses the Thom spectrum A to study the bo-resolution of the
sphere in [Mah81a], so perhaps the spectrum B could be used to study
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the tmf-resolution of Z. This is work in progress. See also Corollary 6.2.11
and the discussion preceding it.

(g) Is there an equivariant analogue of Theorem A at higher heights and other
primes? Currently, we have such an analogue at height 1 and at p = 2;
see Section 7.

(h) The Hopkins-Mahowald theorem may used to define Brown-Gitler spectra.
Theorem A produces “relative” Brown-Gitler spectra for BP⟨n⟩, bo, and
tmf. In future work, we will study these spectra and show how they relate
to the Davis-Mahowald non-splitting of tmf ∧ tmf as a wedge of shifts of
bo-Brown-Gitler spectra smashed with tmf from [DM10].

(i) The story outlined in the introduction above could fit into a general frame-
work of “fp-Mahowaldean spectra” (for “finitely presented Mahowaldean
spectrum”, inspired by [MR99]), of which A, B, T (n), and y(n) would be
examples. One might then hope for a generalization of Theorem A which
relates fp-Mahowaldean spectra to fp-spectra. It would also be interesting
to prove an analogue of Mahowald-Rezk duality for fp-Mahowaldean spec-
tra which recovers their duality for fp-spectra upon taking Thom spectra
as above.

(j) One potential approach to the question about surjectivity raised above is
as follows. The surjectivity claim at height 0 is the (trivial) statement
that the unit map S → HZ is surjective on homotopy. The Kahn-Priddy
theorem, stating that the transfer λ : Σ∞RP∞ → S is surjective on π∗≥1,
can be interpreted as stating that π∗Σ

∞RP∞ contains those elements of
π∗S which are not detected by HZ. One is then led to wonder: for each
of the Thom spectra R on the second line of Table 1, is there a spectrum
P along with a map λR : P → R such that each x ∈ π∗R in the kernel of
the map R → Θ(R) lifts along λR to π∗P? (The map R → Θ(R) is an
equivalence in dimensions < |σn| (if R is of height n), so P would have
bottom cell in dimension |σn|.)

Since Σ∞RP∞ ≃ Σ−1 Sym2(S)/S, the existence of such a result is very
closely tied to an analogue of the Whitehead conjecture (see [Kuh82]; the
Whitehead conjecture implies the Kahn-Priddy theorem). In particular,
one might expect the answer to the question posed above to admit some
interaction with Goodwillie calculus.

(k) Let p ≥ 5. Is there a p-primary analogue of B which would provide a
Thom spectrum construction (via Table 1) of the conjectural spectrum
eop−1? Such a spectrum would be the Thom spectrum of a p-complete
spherical fibration over a p-local space built via p− 1 fiber sequences from
the loop spaces ΩS2k(p−1)+1 for 2 ≤ k ≤ p.

(l) The spectra T (n) and y(n) have algebro-geometric interpretations: the
stack MT (n) associated (see [DFHH14, Chapter 9]; this stack is well-
defined since T (n) is homotopy commutative) to T (n) classifies p-typical
formal groups with a coordinate up to degree pn+1 − 1, while y(n) is the
closed substack of MT (n) defined by the vanishing locus of p, v1, · · · , vn−1.
What are the moduli problems classified by A and B? We do not know if
this question even makes sense at p = 2, since A and B are a priori only
E1-rings. Nonetheless, in [Dev19a], we provide a description of tmf∧A in
terms of the Hodge filtration of the universal elliptic curve (even at p = 2);
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we also showed that (tmf ∧A)[x2] admits an E2-algebra structure, where
|x2| = 2.

(m) Theorem A shows that the Hopkins-Mahowald theorem for HZp can be
generalized to describe forms of BP⟨n⟩; at least for small n, these spectra
have associated algebro-geometric interpretations (see [DFHH14, Chap-
ter 9]). What is the algebro-geometric interpretation of Theorem A?
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