
STABLE SPLITTINGS OF CLASSIFYING SPACES OF COMPACT LIE

GROUPS

1. Introduction

The goal of this talk is to provide a proof of the following result, following [Sna79].

Theorem 1.1. Let Gn denote one of the groups U(n), Sp(n), or O(2n). Then:

(1) There are stable equivalences νn : Σ∞+ BGn →
∨
t≤n Σ∞BGt/BGt−1 which are compati-

ble as n varies.
(2) There is a stable equivalence Σ∞+ BG∞ '

∨
t Σ∞BGt/BGt−1.

Let us briefly mention how this is relevant to the immersion conjecture. In the previous
lecture, Jeremy constructed the space BO/In. The immersion conjecture is equivalent to the
existence of a homotopy lift in the following diagram:

BO(n− α(n))

��
BO/In //

77

BO.

While we will not go into details about the use of Theorem 1.1 in the proof of this result, we
shall prove the following proposition which will be relevant for future lectures.

Proposition 1.2. There is a stable map Σ∞BO/In → Σ∞BO(n − α(n)) lifting the map
Σ∞BO/In → Σ∞BO.

Proof. Let us first prove that for every integer m, the space BO/BO(m) has the (2m + 1)-
dimensional homotopy type of a product of mod 2 Eilenberg-MacLane spaces K(V, t) for t >
m and V an F2-vector space. Because BO/BO(m) is m-connected, this is a claim about
the stable range. We know that BO(m + 1)/BO(m) is homotopy equivalent to Σm+1MO
through dimension 2m+ 1. It follows that we get a splitting of Σ∞BO/BO(m) as Σm+1MO ∨
Σ∞BO/BO(m+ 1) through dimension 2m+ 1. The claim now follows by recalling that MO is
a wedge of Eilenberg-MacLane spectra and continuing to split Σ∞BO/BO(m+ 1).

We now return to the proof of the proposition. The obstruction constructing such a lift is the
composite Σ∞BO/In → Σ∞BO → Σ∞BO/BO(n − α(n)). We know that BO/BO(n − α(n))
has the (2(n−α(n)) + 1)-dimensional homotopy type of a product of mod 2 Eilenberg-MacLane
spaces. Since BO/In has the homotopy type of an n-dimensional complex, and n ≤ 2(n −
α(n)) + 1, this lifting problem is entirely a cohomological obstruction. We know, however,
that all cohomological obstructions vanish because of Massey’s result stating that the normal
Stiefel-Whitney classes w̃i(M

n) of a compact n-manifold Mn vanish for i > n− α(n). �

2. Preliminaries: the transfer

Before proceeding, we discuss the construction of the stable transfer map, which is originally
due to Becker and Gottlieb. The following description of the transfer map is discussed in [Mil89,
Lecture 23].
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Construction 2.1. Let X be a locally compact Hausdorff space, and let U ⊆ X be an open
subset. Then, there is a Pontryagin-Thom map X+ → X+/(X+ − U) ' U+.

Suppose now that F → E
p−→ B is a smooth fiber bundle of compact manifolds. Then, the

Whitney embedding theorem allows us to embed i : E ↪→ Rn for some n ≥ 0, so we obtain
an inclusion E → B × Rn. Since this inclusion is not necessarily open, we will consider the
normal bundle νE of this inclusion. Then, we have a tubular neighborhood N of E inside
B ×Rn, which, by definition, is open. It follows from the discussion in the previous paragraph
that there is a map (B ×Rn)+ → N+. But we have identifications N+

∼= N/∂N = EνE and
(B×Rn)+

∼= Bnε = ΣnB+ of Thom spaces, so the Pontryagin-Thom construction yields a map
ΣnB+ → EνE .

We claim that Σ∞+ E
νE = Σ∞+ E

−τ(p), where τ(p) is the bundle over E of tangent vectors along
the fibers. To prove this, we note that

νE + p∗τB + τ(p) = νE + τE = i∗τB×Rn = p∗τB + nεE .

It follows that νE + τ(p) = nεE , i.e., νE = nεE − τ(p), which proves the desired result. Stably,
we therefore obtain a map Σ∞+ B → Σ∞+ E

−τ(p).
The inclusion νE ↪→ nεE yields the map ΣnB+ → EνE → ΣnE+. It follows that the transfer

map can be viewed as a stable map Σ∞+ B → Σ∞+ E. The composite map Σ∞+ B → Σ∞+ E
p−→ Σ∞+ B

induces multiplication by the Euler characteristic χ(p) of the fiber on ordinary cohomology (with
arbitrary coefficients).

Remark 2.2. Let us briefly mention why this map is called the transfer. If p : E → B is a finite
covering space (explored in more detail in Construction 4.1 below), then the transfer induces a
map p∗ : H∗(E)→ H∗(B), which can be described as follows in the case of de Rham cohomology,
for instance. Let [ω] ∈ Hk(E), and let ω be a k-form representing this cohomology class. If x ∈ E
and y ∈ p−1(x), then we can identify T ∗xE

∼= T ∗yB. We then have (p∗ω)(x) =
∑
y∈p−1(x) ω(y),

which is precisely integration over the fiber. A similar example works for complex K-theory: if ξ
is a vector bundle over E, then p∗ξ is the bundle over B whose fibers are (p∗ξ)x =

⊕
y∈p−1(x) ξy.

3. The proof of Theorem 1.1

Let us now proceed to discuss the proof of Theorem 1.1. Our first order of business will be
to define the map νn appearing in the statement of the theorem. As in Theorem 1.1, let Gn
denote U(n), Sp(n), or O(2n). Define subgroups Hn by the wreath product G1 o Σn. We can
therefore describe BHn as EΣn ×Σn

BGn1 . We then have the following result, a proof of which
can be found in [CMT79]:

Lemma 3.1. There is a stable splitting

Σ∞+ BHn '
∨

0≤j≤n

Σ∞BHj/BHj−1.

Proof sketch. For 0 ≤ k ≤ n, there is a Hn/Hk-bundle BHk → BHn, so the transfer gives
a stable map Σ∞+ BHn → Σ∞+ BHk. The composite down to Σ∞BHk/BHk−1 gives a map
Σ∞+ BHn →

∨
0≤j≤n Σ∞BHj/BHj−1. The same argument as the one used below to prove the

first part of Theorem 1.1 will show that this map is an equivalence. �

There is a Gn/Hn-bundle πn : BHn → BGn, so we obtain a stable transfer map τn :
Σ∞+ BGn → Σ∞+ BHn. We shall implicitly use the following proposition below; its proof will be
postponed to the end of the lecture.
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Proposition 3.2. There is a homotopy commutative diagram

BGn
τn //

��

QBHn

��
BGn+1 τn

// QBHn+1.

We now turn to the proof of the first part of Theorem 1.1. There is a map

νn : Σ∞+ BGn
τn−→ Σ∞+ BHn

∼−→
∨

0≤t≤n

Σ∞BHt/BHt−1

∨
πt/πt−1−−−−−−→

∨
0≤t≤n

Σ∞BGt/BGt−1.

By Whitehead’s theorem, statement (1) of Theorem 1.1 will follow if we can prove that νn
induces an isomorphism in homology. We shall prove this by induction on n. The claim is
obvious when n = 1, so we only need to establish the inductive step. Assume that νn−1 is a
homotopy equivalence. Then, the composite

Σ∞+ BGn
νn−→

∨
0≤t≤n

Σ∞BGt/BGt−1 → Σ∞BGn/BGn−1

is homotopic to the composite

Σ∞+ BGn → Σ∞BGn/BGn−1
τn/τn−1−−−−−→ Σ∞BHn/BHn−1

πn/πn−1−−−−−−→ Σ∞BGn/BGn−1,

where the existence of the map τn/τn−1 is deduced from Proposition 3.2. However, the map
πn◦τn induces the identity in homology, and the map H∗(BGn)→ H∗(BGn/BGn−1) is surjective
with kernel given by H∗(BGn−1), so we conclude by induction that νn induces a homology
isomorphism.

The proof of statement (2) of Theorem 1.1 is a little more subtle. We begin by defining a few
maps. When Gn is as in Theorem 1.1, we know that BG∞ is an infinite loop space. It follows
that the inclusion of G1 into G∞ induces a map λ : QBG1 → BG∞. There is also a map going
the other way, as we now explain.

By Proposition 3.2, we obtain a map τ : BG∞ → QBH∞. There is a map i : BH∞ → QBG1,
defined as follows. Recall that QX (for simply-connected X, at least) has an operadic filtration
by subspaces CnX. Choosing the Barratt-Eccles model for the E∞-operad, we find that there
is a map in : EΣn ×Σn

Xn → CnX. In particular, since BHn = EΣn ×Σn
(BG1)n, we obtain

maps in : BHn → CnBG1. These maps are compatible, in the sense that in|BHn−1
= in−1. It

follows that i = colim in defines a map BH∞ → QBG1. The composite

BG∞
τ−→ QBH∞

i−→ QQBG1 → QBG1

is the map hinted to in the previous paragraph. We shall denote this map by τG.
We then have:

Proposition 3.3. The composite λ ◦ τG is a homotopy equivalence. Moreover, if R is any

torsion-free ring such that H∗(BG∞;R) is torsion-free, then the composite BH∞
i−→ QBG1

λ−→
BG∞ induces the same map as π∞ : BH∞ → BG∞ in R-homology.

Remark 3.4. This implies, for example, that BU splits off of QCP∞. This result was origi-
nally proved by Segal in [Seg73] using Brauer induction, and is a space-level statement of the
splitting principle for vector bundles. It can also be used to provide a slick proof of the complex
Adams conjecture. More is true: this splitting result is true C2-equivariantly, for the complex
conjugation actions on BU and QCP∞. It is also true in the C-motivic category, although we
do not know of a reference for these latter two claims.
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The equivalence in statement (2) of Theorem 1.1 comes from the following two maps:

f :
∨
t≥0

Σ∞BGt/BGt−1

∨
τt/τt−1−−−−−−→

∨
t≥0

Σ∞BHt/BHt−1
∼−→ Σ∞+ BH∞

i−→ Σ∞+ QBG1
λ−→ Σ∞+ BG∞

and

g : Σ∞BG∞
τ∞−−→ Σ∞+ BH∞

∼−→
∨
t≥0

Σ∞BHt/BHt−1

∨
πt/πt−1−−−−−−→

∨
t≥0

Σ∞BGt/BGt−1.

Here, we have used Lemma 3.1. It is easy to use Proposition 3.3 to conclude.
It remains to provide proofs of Proposition 3.2 and Proposition 3.3.

4. The proof of Proposition 3.3

We first show that λ ◦ τG is a homotopy equivalence if the second statement of Proposition
3.3 is true. By Whitehead’s theorem, we know that λ ◦ τG is a homotopy equivalence if it
induces an isomorphism in integral homology (at least when Gn = U(n), Sp(n); if Gn = O(2n),
then we need to show it induces an isomorphism in homology with Z[1/2] and Z/2-coefficients).
The map πn ◦ τn induces multiplication by the Euler characteristic χ(Gn/Hn) in homology; but
χ(Gn/Hn) = 1, so we find that πn ◦ τn induces an isomorphism in homology. The second part
of Proposition 3.3 now implies that λ ◦ τG also induces the identity on integral (and Z[1/2])
homology. The proof that λ ◦ τG induces the identity on Z/2-homology when G = O is a bit
more subtle, so we will not address it here.

It therefore suffices to prove the second statement of Proposition 3.3. It clearly suffices to

show that the map BHn
in−→ QBG1

λ−→ BG∞ induces the same map in homology as πn for
each finite n. Before proceeding, we need to recall the construction of the Kahn-Priddy transfer
(from [KP72]). This is an elaboration of Construction 2.1 in the case of a finite covering.

Construction 4.1. Let π : E → B be a n-fold covering with B connected, locally path-
connected, and semi-locally simply connected (these conditions are to ensure the existence of
a universal cover). Suppose that π1(E) = H and π1(B) = H, so that |G/H| = n. If X is
the universal cover of B on which G acts freely on the right, then π is homeomorphic to the
cover p : X/H → X/G. The transitive action of G on G/H = {g1H, · · · , gnH} defines a
homomorphism G→ Σn, and hence a map ρ : EG→ EΣn. This allows us to define a map

B = X/G = X ×G EG→ (X/H)n ×Σn
EΣn = En ×Σn

EΣn

by sending a pair (x,w) ∈ X ×G EG to (xg1, · · · , xgn, ρ(w)). Here, xgi is the image of xgi ∈ X
under the quotient X → X/H.

This map is related to the transfer from Construction 2.1 as follows. There is a map En×Σn

EΣn → QE, and the composite B → En ×Σn
EΣn → QE is precisely the Becker-Gottlieb

transfer.

In the general situation above, suppose we have a map E → X, where X is an infinite loop
space. Then, the composite

B → En ×Σn EΣn → Xn ×Σn EΣn → X,

where the final map uses the infinite loop structure on X, is called the Kahn-Priddy transfer of
the map E → X with respect to the covering π. (Note that we do not need the entire infinite
loop structure on X to construct such a map: it suffices to have a Hn

∞-structure.)
Returning to the situation at hand, we learn that λ ◦ in : BHn → BG∞ is exactly the

Kahn-Priddy transfer of the composite

BG1 ×BHn−1 → BG1 → BG∞
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with respect to the n-fold covering BG1 × BHn−1 → BHn. Here, BG1 → BG∞ classifies the
virtual vector bundle ξ − dim ξ, where ξ is the universal complex/quaternionic line bundle or
the universal 2-plane real vector bundle over BG1.

Let τξ denote the transfer of the map BG1 × BHn−1 → BG1
ξ−→ BG∞ with respect to the

covering BG1 × BHn−1 → BHn, and similarly for τdim ξ. Concretely, the above discussion
implies that if ι : BG∞ → BG∞ is the map representing negation in reduced K-theory, then
the map induced by λ ◦ in on homology sends:

H̃∗(BHn) 3 x 7→
∑

(τξ)∗(xi)(ι ◦ τdim ξ)∗(xj) ∈ H̃∗(BG∞)

where the diagonal of H̃∗(BHn) sends x to
∑
xi ⊗ xj . This is the same as the map induced by

πn on homology if τdim ξ kills H̃∗(BHn) and τξ is the same as πn.
We leave it as an easy exercise to the reader to use the triviality of dim ξ over BG1 to prove

that τdim ξ is the composite of the map BHn → BΣn contracting G1 to a point with the map

BΣn → BGn → BG∞. In particular, (τdim ξ)∗ factors through H̃∗(BΣn) — but this is torsion,
so (τdim ξ)∗ must be zero, as desired.

It remains to show that τξ is the same as πn. The map τξ is given by the composite

BHn → EΣn ×Σn
(BG1 ×BHn−1)n → EΣn ×Σn

(BG1)n → EΣn ×Σn
(BG∞)n → BG∞.

There is an equivalence BHn = EΣn ×Σn
(BG1)n, and the composite to EΣn ×Σn

(BG1)n is
the identity. The desired claim reduces to proving that there is a commutative diagram

BHn
//

��

BGn

��
EΣn ×Σn

(BG∞)n // BG∞.

A proof of this appears in [May77, Chapter VIII].
In order to finish the case when Gn = O(2n), we need to also address the case of homology

with Z/2-coefficients. Although this is the case we care about, it requires a lot more care, so we
will omit the argument.

5. The proof of Proposition 3.2

In order to prove Proposition 3.2, we need the following technical result from differential
topology.

Lemma 5.1. Let G be a compact manifold. Let F and Y be compact G-manifolds with a free

action of G such that F has no boundary (i.e., F is closed), and let F → Y ×G F = E
π−→

Y/G = X be a differentiable fiber bundle. Suppose F1 ⊆ F is a G-submanifold, with equivariant
tubular neighborhood N . Suppose ρ is an equivariant vector field on F such that on ∂N , it is
homotopic through nowhere zero vector fields to an outward normal and satisfies |ρ(x)| = 1 for

x 6∈ N . Let π′ denote the differentiable bundle F1 → Y ×G F1
π′−→ X. Then, there is a homotopy

commutative diagram

X
τ(π′) //

τ(π) %%

Q(Y ×G F1)

��
Q(E).
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Proof sketch. The fiber bundle N → Y ×G N
π′′−−→ X is fiber homotopy equivalent to F1 →

Y ×G F1
π′−→ X, so the composite X

τ(π′)−−−→ Q(Y ×G F1) → Q(E) in the diagram above is

homotopic to the composite X
τ ′′−−→ Q(Y ×G N)→ Q(E). It therefore suffices to show that the

latter map is homotopy equivalent to τ(π).
The construction of the map τ(π) can be rephrased as follows. Let V be a finite-dimensional

G-vector space for which there is a G-equivariant embedding F ⊆ V , and let N1 be the normal
bundle. Then, if f : N1 → V is the choice of a tubular neighborhood for F , we have the
Pontryagin-Thom map γ : Th(V ) = SV → V/(V − f(Ni)) = Th(N1). There is an inclusion
N1 ⊆ N1⊕TF = F×V , so this can be further composed with the map Th(N1)→ Th(N1⊕TF ) =
F+ ∧ Th(V ). This produces a map Th(V ) → F+ ∧ Th(V ); the transfer τ(π) is obtained by
taking the product of this map with the identity of Y , quotienting out by the G-action, and
then stabilizing.

We can define a family of maps is : Th(N1)→ F+ ∧ Th(V ) as follows:

is(v) =

{
1

1−s|ρ(x)| (v, sρ(x)) if s|ρ(x)| < 1

∞ else.

Clearly i0 is the map induced by the inclusion N1 ⊆ F ×V , so i0 composed with the Pontryagin-
Thom map γ is the transfer map τ(π). However, the composite map i1 ◦ γ is precisely the map
used to define τ(π′′) when ρ is an outward normal on ∂N . �

We need to specialize a little bit in order to be able to apply Lemma 5.1 in our situation. Let
ρ be a G-equivariant vector field on F which is non-degenerate on its singular set F1 (this means
that the Jacobian does not have vanishing determinant at any critical point of ρ). Assume that
F1 is connected with transitive G-action. Let ε > 0, and define Nε = {f ∈ F : |ρ(f)| ≤ ε}.
Because ρ is non-degenerate, we can choose ε small enough so that ρ has a nonzero component
on ∂N near f0 ∈ F1 in the normal direction to ∂N . By the transitivity of the G-action on
F1 and the equivariance of ρ, we can do this compatibly near all f0 ∈ F1. Then, Nε is an
equivariant tubular neighborhood of F1 in F . Moreover, ρ has a nonzero (outward, if we wish)
normal component at each point of ∂N . If ρ has this property, then ρ is homotopic on ∂N to
an outward normal vector field by linearly shrinking the tangential component of ρ to zero. We
can therefore apply Lemma 5.1 to such a situation.

Using Lemma 5.1, we have:

Proof. There is a pullback diagram:

Gn/Hn
// EGn ×Gn−1 Gn/Hn

π′n //

j′

��

BGn−1

��
Gn/Hn

// EGn ×Gn
Gn/Hn = BHn πn

// BGn.

This gives rise to a commutative diagram

BGn−1
//

τ ′n
��

BGn

τn

��
Q
(
EGn ×Gn−1 Gn/Hn

)
Qj′
// QBHn.

We therefore need to understand the map τ ′n. The discussion above shows that Lemma 5.1 can
be applied to the situation where ρ is a G-equivariant vector field on F which is non-degenerate
on its singular set F1, the latter of which is connected with transitive G-action. Suppose that
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we can construct Gn−1-equivariant vector fields on Gn/Hn which have singular sets Gn−1/Hn−1

on which they are non-degenerate (this will be done below). It follows from Lemma 5.1 applied
to the bundle π′n that there is a commutative diagram

BGn−1

τn−1 //

τ ′n ))

QBHn−1

��
Q
(
EGn ×Gn−1 Gn/Hn

)
.

Gluing these two commutative diagrams proves the desired result. �

It remains to construct the vector fields used in the above proof. Let G be a compact Lie
group as above, and let g be its associated Lie algebra. For v ∈ g we can define a vector field
φv on G as follows: φv(g) = (Drg)(v) ∈ TzG, where rg denotes right translation by g ∈ G and
D denotes the derivative of rg. It is not hard to prove the following lemma.

Lemma 5.2. Let `g denote left translation by g ∈ G. If h ∈ G is in the centralizer of exp(v) ∈ G,
then D(`h)(φv(g)) = φv(hg). If k ∈ G is any element, then D(rk)(φv(g)) = φv(gk).

Now, suppose that H ⊆ G is a closed subgroup of G, and suppose 0 6= v ∈ g. Then, we
can find a vector field ρv on G/H such that ρv(gH) = 0 if and only if g−1 exp(v)g ∈ H, and
D(`k)(ρv(gH)) = ρv(kgH) if k is in the centralizer of exp(v). The idea is to take ρv to be the
quotient of φv by the right H-action.

We now specialize even further to the special case when G is one of our groups Gn. We will
only concentrate on the case Gn = U(n) and Hn = NU(n)(T ) for now. Let v ∈ u(n) denote

an element such that w = exp(v) =

( x

. . .
x
y

)
∈ T with x 6= y, so that the centralizer of

w is U(n − 1) × U(1). This implies that ρv is a left U(n − 1) × U(1)-equivariant vector field
on U(n)/NU(n)(T ). In order to conclude, we need to show that its singular set is equivariantly
homeomorphic to U(n− 1)/NU(n−1)(T ).

We know that ρv(gH) = 0 if and only if g−1wg ∈ H. If g−1wg ∈ H, then there is a σ ∈ Σn
such that σ−1g−1wgσ ∈ T , so gσTσ−1g−1 is a maximal torus which contains w. Now, it is a
general fact that the identity component of the normalizer of an element g in a compact Lie
group is the union of the maximal tori containing g. In particular, there is b ∈ U(n− 1)×U(1)
such that bTb−1 = gσTσ−1g−1, so we conclude that g ∈ (U(n−1)×U(1))H, so the singular set
of ρv is contained in U(n − 1)/NU(n−1)(T ). Conversely, the same argument proves that every
element of U(n− 1)/NU(n−1)(T ) is in the singular set of ρv.
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