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In this talk, we will review the filtered prismatization ZN
p of Zp. It turns out to

be conceptually easier to understand the filtered prismatization GN
a of Ga, which

(as a by-product) tells us what ZN
p is supposed to be. To illustrate this, let us briefly

review Arpon’s talk, which described the prismatization G∆
a . Symbols like CAlgZp

will always mean ∞-categories of (animated) p-nilpotent Zp-algebras. Throughout,
we will make liberal use of the identifications W/V = Ga and W [F ] = G♯

a.

1. Prismatization

Recollection 1.1. If A and B are commutative rings, and we are given a ring
stack R : CAlgA → CAlgB , then any B-scheme X defines an A-stack XR via the
composite

CAlgA
R−→ CAlgB

X−→ S.

The global sections Γ(XR;OXR) ∈ CAlgA can be regarded as some “cohomology of
X” valued in A-algebras. This is known as transmutation. The driving principle
behind this whole story is that one can fully recover “A-valued cohomology theories”
on B-schemes via ring stacks as above.

Recall that if A is a p-adic ring, then the de Rham stack associated to Ga is
given by the quotient Ga/G

♯
a. There is a commutative diagram

F∗W

V

��

F∗W

p=F∗V

��
W

F
// F∗W ;

taking cones in every direction (and using the fact that F : W → F∗W is faithfully
flat), we see that there is an isomorphism

Ga/G
♯
a
∼= (W/V )/W [F ] ∼= F∗W/p.

When A = k is a perfect field of characteristic p > 0, the theory of crystalline
cohomology produces a cohomology theory taking values in W (k)-algebras such
that if X is an Fp-scheme, then

(1) Γcrys(X/W (k))⊗W (k),φ k ∼= ΓdR(X/k).

Part of this work was done when the author was supported by the PD Soros Fellowship and
NSF DGE-2140743.
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The existence of crystalline cohomology can be explained by the observation that
there is a factorization

CAlgW (k)

GdR
a //

&&

CAlgW (k)

CAlgk,

ϵ

OO

where ϵ : CAlgk → CAlgW (k) is the functor induced by the augmentation W (k) →
k. This factorization comes from the fact that if R ∈ CAlgW (k), then p = 0 ∈
GdR

a (R) = W (R)/p. If X is a k-scheme, then the composite

CAlgW (k)

GdR
a−−−→ CAlgk

X−→ S

is the crystalline stack Xcrys, whose coherent cohomology is Γcrys(X/W (k)). The
isomorphism (1) can be encoded in the following observation:

Observation 1.2. The composite

CAlgk
ϵ−→ CAlgW (k)

φ−→ CAlgW (k)

W/p−−−→ CAlgk

can be identified with the functor defining the ring stack GdR
a over k.

One can generalize the pair (W (k), p) to a more general pair (A, d) such that
A/d = A, and ask for a deformation of de Rham cohomology over A/d to A itself;
this would be some version of crystalline cohomology. For instance, we could ask
for a functor R : CAlgA → CAlgA/d such that if X is an A/d-scheme, the composite

CAlgA
R−→ CAlgA/d

X−→ S

is somehow related to the de Rham stack of X.
A naive guess for the functor R might be to consider a stack “W/d”, viewed as a

functor CAlgA → CAlgA/d sending R 7→ W (R)/d. To make sense of this, we need
to be able to view the element d ∈ A as an element of W (A); if there were a map
A → W (A), we could simply take the image of d to get the desired element. Having
a map A → W (A) is the same as asking that A be a δ-ring, so let us now assume
this. Then, A admits a lift of Frobenius φ, and we can ask that the composite

CAlgA/d
ϵ−→ CAlgA

φ−→ CAlgA
W/d−−−→ CAlgA/d

be identified with GdR
a . This is the same as asking that the composite

A → W (A) → W (A/d)
φ−→ W (A/d)

send d to a unit multiple of p. This composite sends

d 7→ (d, δ(d), · · · ) 7→ (0, δ(d), · · · ) 7→ p(δ(d), · · · ),

so we are simply asking that δ(d) ∈ A/d be a unit. If we further ask that A be
d-complete, then this is the same as asking that δ(d) be a unit in A.

Combining the discussion above, we end up with the definition of an oriented
prism:

Definition 1.3. An oriented prism is a pair (A, d) such that A is equipped with a
δ-ring structure, A is (p, d)-adically complete, and δ(d) ∈ A is a unit.
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If (A, d) is an oriented prism, the functor W/d : CAlgA → CAlgA/d is well-
defined, and therefore can be regarded as an analogue of the crystalline stack of
Ga; we will denote it by G∆

a , and refer to it as the prismatization of Ga. Let us
make a few points:

• The “de Rham comparison theorem” is now baked into the construction:
namely, there is an isomorphism F∗G

∆
a
∼= GdR

a as stacks over A/d.
• Similarly, if d = p, the “crystalline comparison theorem” is simply the

observation that as stacks over A, there is an isomorphism F∗G
∆
a
∼= Gcrys

a .

This whole picture can be “globalized” over all prisms as follows (see [BL22a,
BL22b, Dri22]). Namely, if R is a p-nilpotent ring, let us say that a pair (I, α :
I → W (R)) of an invertible W (R)-module I and a map α is a Cartier-Witt divisor
if the composite

I
α−→ W (R)

Res−−→ R

is nilpotent, and the composite

I
α−→ W (R)

δ−→ R

generates the unit ideal of R. The functor R 7→ {Cartier-Witt divisors on R} de-
fines a functor Z∆

p : CAlgZp
→ S. If (A, d) is a oriented prism, and A → R is a map,

there is a unique δ-ring map A → W (R); the tensor product (d)⊗AW (R) → W (R)
is a Cartier-Witt divisor if (p, d) is nilpotent in R. Therefore, we obtain a map
Spf(A) → Z∆

p .

Definition 1.4. Let X be a bounded p-adic formal scheme. Let X∆ : CAlgZp
→ S

be the functor sending R to the groupoid of Cartier-Witt divisors I
α−→ W (R) and

a map SpecW (R)/I → X of Spf(Zp)-schemes. By construction, there is a map
X∆ → Z∆

p .

Note that by construction, if (A, d) is an oriented prism, the pullback of G∆
a

along the map Spf(A) → Z∆
p is isomorphic to the stack we denoted G∆

a above.

2. Filtered prismatization and the Hodge+conjugate filtrations

Our goal in this talk is to understand the filtered prismatization. Again, the
whole story will be modeled after the structures present in crystalline cohomology.
As a precursor to this, let us try to understand the structures present in de Rham
cohomology over a perfect field k of characteristic p > 0: namely, the Hodge and
conjugate filtrations. Let X be a smooth k-scheme.

(a) The Hodge filtration on de Rham cohomology is a decreasing filtration;
the associated filtered k-module has underlying object ΓdR(X/k), and has
associated graded given by ΓHdg(X/k). The ring stack defining de Rham
cohomology is

GdR
a = (W/V )/W [F ] = cofib(G♯

a ⊕ F∗W
(x,a)7→x+V a−−−−−−−−→ W ),

while the ring stack defining Hodge cohomology is

GHdg
a = Ga ⊕G♯

a(−1)[1] ∼= W/V ⊕G♯
a(−1)[1].
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One natural way to interpolate between these two stacks is by working over
A1

ℏ/Gm with coordinate1 ℏ. The universal line bundle O(1) over A1
ℏ/Gm

has a tautological section ℏ : O → O(1). We can then consider the cofiber
of the composite

GdR,+
a := cofib(V(O(−1))♯ ⊕ F∗W

ℏ♯,id−−−→ G♯
a ⊕ F∗W

(x,a)7→x+V a−−−−−−−−→ W ).

It turns out that this quotient is indeed a ring stack over A1
ℏ/Gm, and the

resulting cohomology theory is Hodge-filtered de Rham cohomology.
(b) The conjugate filtration on de Rham cohomology is an increasing filtra-

tion; the associated filtered k-module has underlying object ΓdR(X/k),
and has associated graded given by ΓHdg(X

(1)/k). Therefore, we are look-
ing for a stack Gconj

a which interpolates between GdR
a and F∗G

Hdg
a =

F∗Ga ⊕ F∗G
♯
a(1)[1]. (Note that the weight is +1 and not −1, because

the filtration is increasing!) To motivate this construction, recall how the
Cartier isomorphism comes about in the stacky picture: the map G♯

a → Ga

defining GdR
a factors as the composite G♯

a ↠ αp ↪→ Ga, so that

GdR
a

∼= Ga/αp ×B ker(G♯
a ↠ αp) ∼= F∗Ga ⊕ F∗G

♯
a[1].

This isomorphism is not one of ring stacks, but it does indicate to us
that the conjugate filtration on GdR

a should be obtained by “degenerating
F∗G

♯
a

V−→ G♯
a to zero”. More precisely, let us work over the stack A1

σ/Gm

with coordinate2 σ in weight −1, and let Gσ be the group scheme over
A1

σ/Gm defined by the pushout

F∗G
♯
a

V //

σ♯

��

G♯
a

��
F∗V(O(1))

♯ // Gσ.

Note that Gσ/F∗V(O(1))
♯ ∼= αp. Then, there is a map Gσ → Ga of group

schemes over A1
σ/Gm, given by the square

F∗G
♯
a

V //

σ♯

��

G♯
a

��
F∗V(O(1))

♯
0
// Ga.

The map Gσ → Ga is a quasi-ideal, and we will write Gconj
a to denote its

cofiber. This is a ring stack, and it encodes the conjugate filtration on de
Rham cohomology.

1Everywhere a subscript ℏ shows up below, one can replace it by t to obtain the notation
used in [Bha22].

2Everywhere a subscript σ shows up below, one can replace it by u to obtain the notation
used in [Bha22].
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One can translate the preceding discussion to Witt vector models, too.
Namely, define a group scheme Mσ over A1

σ/Gm defined by the pushout

(2) G♯
a

//

σ♯

��
pushout

W

��
V(O(1))♯ // Mσ.

Note that Mσ/V(O(1))
♯ ∼= F∗W . Then, there is a map dσ : Mσ → W of

group schemes over A1
σ/Gm, given by the square

(3) G♯
a

//

σ♯

��

W

p

��
V(O(1))♯

0
// W.

The map Mσ → W is a quasi-ideal, and F∗W/Mσ can be shown to be
isomorphic to Gconj

a . (This is actually not very difficult: it boils down to
relating the above squares to the argument we used at the beginning to
prove the isomorphism GdR

a
∼= F∗W/p.)

Remark 2.1. The diagram (3) can be extended slightly as follows: there is in fact
a commutative diagram whose rows are cofiber sequences

(4) G♯
a

//

σ♯

��
pushout

W

p

��

F // F∗W

V(O(1))♯
0
//

0

��

Mσ
F //

dσ

��

F∗W

p

��
G♯

a
// W

F
// F∗W.

Our final stop in characteristic p is to understand how to glue the conjugate and
Hodge filtrations together. For this, we need to work over a base which encodes
two filtrations on the same k-module: the most natural candidate is

C := (Spec k[σ, ℏ]/σℏ)/Gm,

where σ has weight −1 and ℏ has weight 1. This looks like the Gm-quotient of two
coordinate axes. The universal line bundle L over C has two maps σ : O → L and
ℏ : L → O; its restriction to A1

σ/Gm is O(1), while its restriction to A1
ℏ/Gm is

O(−1).
We can now define a ring stack GC

a which glues the conjugate and Hodge
filtrations: this will have the property that

F∗G
C
a |ℏ=0 = Gconj

a , GC
a |σ=0 = GdR,+

a .

First, note that we can still define Mσ over C via the same pushout square (2). To
obtain the Hodge filtration in a manner compatible with the conjugate filtration,
we therefore want a deformation dσ,ℏ : Mσ → W of the map dσ (from (b) above)
such that:
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• When σ = 0, the map dσ,ℏ : Mσ → W can be identified with the composite

V(L)♯ ⊕ F∗W
ℏ♯+V−−−−→ W.

• When ℏ = 0, the map dσ,ℏ : Mσ → W can be identified with dσ.
Note that when σ = 0, we can identify Mσ with V(O(−1)); so we only need to
modify the square (3) as follows:

(5) G♯
a

//

σ♯

��

W

p

��
V(O(1))♯

ℏ♯

// G♯
a

// W.

This pushout defines the desired map dσ,ℏ : Mσ → W . Note that the composite

G♯
a

σ♯

−→ V(O(1))♯
ℏ♯

−→ G♯
a

is zero, since ℏσ = 0.

Remark 2.2. As with the story from Gconj
a , the diagram (5) can be extended

slightly as follows: there is in fact a commutative diagram whose rows are cofiber
sequences

(6) G♯
a

//

σ♯

��
pushout

W

p

��

F // F∗W

V(O(1))♯ //

ℏ♯

��

Mσ
F //

dσ,ℏ

��

F∗W

p

��
G♯

a
// W

F
// F∗W.

One can check that the map dσ,ℏ : Mσ → W defines a quasi-ideal, so that:

Definition 2.3. Let GC
a denote the ring stack over C defined by cofib(Mσ

dσ,ℏ−−−→
W ). Note that

GC
a |σ ̸=0 = W/p, GC

a |ℏ ̸=0 = F∗W/p.

We will call the inclusions Spec k = Cσ ̸=0 ⊆ C and Spec k = Cℏ ̸=0 ⊆ C the Hodge-
Tate and de Rham points, respectively.

We can now finally start to study structures on crystalline cohomology, so
that all stacks below will live over W (k). The key structure showing up here is
the Nygaard filtration. If X is a smooth affine k-scheme, it is characterized by
the following property: N≥jΓcrys(X/W (k)) is the subcomplex of Γcrys(X/W (k))
on which the crystalline Frobenius φ is divisible by pj . Using this, one can show
that the graded pieces NjΓcrys(X/W (k)) can be identified with Fconj

i ΓdR(X/k){i}.
Here, {i} simply denotes tensoring by the ideal (pi)/(pi+1). Another important
property of the Nygaard filtration is that if X is F -liftable to a W (k)-scheme X̃,
then N≥jΓcrys(X/W (k)) = pmax(j−∗,0)F∗

HdgΓdR(X̃/W (k)); in other words, it mixes
the Hodge and p-adic filtrations.
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We would therefore like to construct a mixed characteristic ring stack GN
a

which encodes the Nygaard filtration on crystalline cohomology. In particular, the
underlying stack of GN

a should be GdR
a (now over SpfW (k)!). Recall that

π∗TC
−(k) ∼= W (k)[σ, ℏ]/(σℏ− p),

and that the resulting ℏ-adic filtration on TC−(X) encodes the Nygaard filtration
on prismatic cohomology. Motivated by this, let us define

(7) kN := Spf(W (k)[σ, ℏ]/(σℏ− p))/Gm,

where σ has weight −1 and ℏ has weight 1. By construction, kN ⊗W (k) k ∼= C, and
QCoh(kN) is precisely the ∞-category of filtered W (k)-modules over (p)•. Over kN,
the definition of Mσ, etc., still go through, and we can define a map dσ,ℏ : Mσ → W
via the pushout

(8) G♯
a

//

σ♯

��

W

p

��
V(O(1))♯

ℏ♯

// G♯
a

// W.

Note that the composite

G♯
a

σ♯

−→ V(O(1))♯
ℏ♯

−→ G♯
a

is no longer zero, but is rather p (since ℏσ = p).

Remark 2.4. As with the story from Gconj
a and GC

a , the diagram (8) can be
extended slightly as follows: there is in fact a commutative diagram whose rows are
cofiber sequences

(9) G♯
a

//

σ♯

��
p♯=p

��

pushout

W

p

��

F // F∗W

V(O(1))♯ //

ℏ♯

��

Mσ
F //

dσ,ℏ

��

F∗W

p

��
G♯

a
// W

F
// F∗W.

Again, one can check that the map dσ,ℏ : Mσ → W defines a quasi-ideal, so
that:

Definition 2.5. Let GN
a denote the filtered prismatization of Ga, defined as the

ring stack over kN given by cofib(Mσ
dσ,ℏ−−−→ W ). Note that

(10) GN
a |σ ̸=0 = W/p = G∆

a , GN
a |ℏ ̸=0 = F∗W/p = Gcrys

a , GN
a |p=0 = GC

a .

We will call the inclusions SpfW (k) = kNσ ̸=0 ⊆ kN and SpfW (k) = kNℏ ̸=0 ⊆ kN

the Hodge-Tate and de Rham points, respectively. If X is a k-scheme, we obtain a
stack XN over kN defined by the functor

CAlgkN

GN
a−−→ CAlgk

X−→ S.

Let HN(X) ∈ QCoh(kN) denote the pushforward of the structure sheaf along the
morphism XN → kN, and let N≥⋆Γ∆(X/A) denote its underlying W (k)-module.
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Remark 2.6. Let us briefly mention why GN
a encodes the Nygaard filtration.

Firstly, we need to show that the Frobenius on Γ∆(X/W (k)) factors through N≥⋆Γ∆(X/A).
This is essentially a consequence of the fact that the map W

p−→ W fits into a com-
mutative diagram

W //

p

��

Mσ
//

dσ,ℏ

��

F∗W

��
W W

F
// F∗W.

Taking vertical cofibers, we obtain a factorization

W/p → GN
a → F∗W/p

of the Frobenius on the ring stack W/p. Secondly, we need to show that NjΓcrys(X/W (k))

can be identified with Fconj
i ΓdR(X/k){i}. This has a rather fun argument; see

[Bha22, Theorem 3.3.5(1)]. It is a topological analogue of the observation that
TC−(X)/ℏ ≃ THH(X), which encodes the conjugate filtration (this uses that
the cyclotomic Frobenius gives an equivalence THH(X)[1/σ]

φ−→ THH(X)tZ/p ≃
HP(X/k), and that THH(X)/σ ∼= HH(X/k)).

Remark 2.7. The Hodge-Tate and de Rham points of kN can be understood
homotopy-theoretically as follows: the Hodge-Tate point is related to the map
φ : TC−(k)[1/σ] → TP(k) ≃ W (k)tS

1

induced by the cyclotomic Frobenius, while
the de Rham point is related to the canonical map can : TC−(k) → TP(k). The
isomorphisms of (10) correspond to the observation that if X is quasisyntomic over
k, then TC−(X)[1/σ] gives a Frobenius untwist of TP(X); since TP(X) encodes
the crystalline cohomology of X, TC−(X)[1/σ] encodes a Frobenius untwist of
crystalline cohomology. The resulting σ-adic filtration (with respect to the lattice
TC−(X) → TC−(X)[1/σ]) encodes the conjugate filtration.

3. Filtered prismatization over Zp

Let us now turn to mixed characteristic (i.e., deforming from A/d to A, where
(A, d) is an oriented prism). Recall from the beginning of the talk that the key idea
was deforming the quasi-ideal W p−→ W over A/d to W

d−→ W over A. Now, we

essentially want to deform the quasi-ideal Mσ
dσ,ℏ−−−→ W . Recall that Mσ sits in an

extension
0 → V(L)♯ → Mσ → F∗W → 0.

This motivates:

Definition 3.1. Let R be a p-nilpotent ring. An admissible W -module M is a
W -module scheme M which sits in an extension of the form

0 → V(L)♯ → M → F∗M
′ → 0

for some L ∈ Pic(R) and an invertible W -module M ′.

Remark 3.2. Every invertible W -module is admissible. Moreover, there is a unique
extension witnessing the admissibility of a W -module: indeed, extensions form a
torsor for HomW (G♯

a, F∗W ), but this vanishes3.

3Since F∗W has a filtration whose graded pieces are Fn∗ Ga, it suffices to show that
HomW (G♯

a, F
n
∗ Ga) = 0 for n > 0. Such a map is Gm-equivariant (because of the Teichmuller
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Construction 3.3. One can prove that there is an equivalence of groupoids Pic(W (R)) ≃
Map(Spec(R), BW×). Given I ∈ Pic(W (R)), we obtain an exact sequence

0 → I ⊗W (R) G
♯
a → I ⊗W (R) W

F−→ I ⊗W (R) F∗W → 0.

If L ∈ Pic(R) and σ : I ⊗W (R) R → L is a map of line bundles over R, then define
Mσ via the pushout

I ⊗W (R) G
♯
a

//

��
pushout

I ⊗W (R) W

��
V(L)♯ // Mσ.

There is then a cofiber sequence

0 → V(L)♯ → Mσ
F−→ I ⊗W (R) F∗W → 0,

and Mσ is an admissible W -module over R. In fact, fpqc-locally on R, every
admissible W -module arises in this way.

Motivated by this construction, we are led to consider:

Definition 3.4. Let R be a p-nilpotent ring. A filtered Cartier-Witt divisor
on R is an admissible W -module M and a map d : M → W of admissible
W -modules, such that the induced map F∗M

′ → F∗W is obtained as F∗ of a
Cartier-Witt divisor over R. Let ZN

p denote the functor CAlg → S sending R 7→
{filtered Cartier-Witt divisors on R}.

Example 3.5. Let I
α−→ W (R) be a Cartier-Witt divisor. Then, we obtain a

map dα : I ⊗W (R) W → W , which is a filtered Cartier-Witt divisor. Indeed,
M := I ⊗W (R) W is admissible (in fact, invertible!) by Construction 3.3, and the
map M ′ → W is simply given by the map

M ′ = F ∗I ⊗W (R) W
α⊗id−−−→ W (R)⊗W (R) W = W.

This is indeed a Cartier-Witt divisor. This construction produces a map jHT :
Z∆

p → ZN
p , which exhibits it as an open substack of ZN

p .

Example 3.6. Let d : M → W be a filtered Cartier-Witt divisor over R, so that
there is a map of admissible sequences

(11) V(L)♯ //

d♯

��

M

d

��

// F∗M
′

F∗d
′

��
G♯

a
// W // F∗W.

It turns out that that the map d♯ arises via an actual morphism ℏ(d) : L → Ga of
line bundles4, so that we obtain a map ℏ : ZN

p → A1
ℏ/Gm. The fiber (ZN

p )ℏ ̸=0 over

map Gm → W×), so such a map is the same as a primitive element of O
G

♯
a

∼= Zp⟨t⟩ of weight

pn. All such elements are zero.
4 It suffices to observe that

HomW (G♯
a,G

♯
a)

∼= HomGa
(G♯

a,G
♯
a)

∼= HomGa
(Ga,Ga) ∼= Ga.

The first isomorphism comes from the fact that the W -action on G♯
a factors through W → Ga;

the second isomorphism comes from Cartier duality over BGm; the third isomorphism is obvious.
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Gm/Gm consists of those Cartier-Witt divisors for which d is nonzero, i.e., d♯ is an
isomorphism. In this case, the Cartier-Witt divisor d : M → W is encoded entirely
by the Cartier-Witt divisor d′ : M ′ → W , so that we obtain an isomorphism

jdR : Z∆
p
∼= (ZN

p )ℏ ̸=0 ⊆ ZN
p ,

exhibiting Z∆
p as an open substack of ZN

p . Note that jdR and jHT are disjoint —
for any filtered Cartier-Witt divisor in the image of jHT, the map d♯ is nilpotent!

Remark 3.7. In homotopy theory, the map ℏ : ZN
p → A1

ℏ/Gm encodes the
filtration on TC−(Zp) arising via the homotopy fixed points spectral sequence.
The points jHT and jdR are supposed to correspond to the maps TC− ⇒ TP
given by the cyclotomic Frobenius and the canonical map, respectively. Note that
σ does not actually exist in π2TC

−(Zp) – rather, the advantage of the stacky
perspective is that we can do everything locally. For instance, there is a cover
TC−(Zp) → TC−(Zp/S[[p̃]]), where the map S[[p̃]] → Zp sends p̃ 7→ p, and the E∞-
ring TC−(Zp/S[[p̃]]) is even5: its homotopy groups are given by Zp[[p̃]][σ, ℏ]/(σℏ −
(p̃ − p)). We can therefore construct the localization TC−(Zp/S[[p̃]])[1/σ]; as long
as we can extend this localization to the entire cosimplicial diagram induced by the
cover TC−(Zp) → TC−(Zp/S[[p̃]]), we can localize the stack associated to the even
filtration6 on TC−(Zp), as well.

It turns out that if d : M → W is a filtered Cartier-Witt divisor, then d defines
a quasi-ideal; we will not prove this here. This implies that the quotient W/M is
in fact a ring stack. In particular:

Definition 3.8. Let GN
a denote the ring stack over ZN

p given locally by the assign-
ment

(d : M → W ) ∈ ZN
p (R) 7→ (W/M)(R) ∈ CAlg.

This will be called the filtered prismatization of the affine line. Using Recollec-
tion 1.1, we can now define the filtered prismatization of any bounded p-adic for-
mal scheme X. Let us assume that X = Spf(A) is affine, for simplicity. Then,
XN → ZN

p is the stack whose functor of points is given by

CAlg ∋ R 7→ {filtered CW-divisors d : M → W, and A → (W/M)(R)} ∈ S.

We will close with two results.

Proposition 3.9. The filtered prismatization kN of Definition 3.8 agrees with the
stack Spf(π∗TC

−(k))/Gm of (7).

Proof. Let us write kN
′
:= Spf(π∗TC

−(k))/Gm, so that if R is a p-nilpotent
ring, then kN

′
(R) is the groupoid of tuples (L, σ, ℏ) of L ∈ Pic(R), σ : O → L, and

ℏ : L → O such that σℏ = p. We will build maps kN
′ → kN and kN → kN

′
(which

will clearly be inverse to each other) as follows:
• To define a map kN → kN

′
, we need to define a map kN(R) → kN

′
(R)

for every p-nilpotent ring R. Suppose we are given a point of kN(R), i.e.,
a filtered Cartier-Witt divisor d : M → W and k → (W/M)(R). Then,

5In fact, it is equivalent (at least) as an E1-ring to (τ≥0ℓ
tZ/p)hS

1
. Using this cover of

TC−(Zp), one can even show that TC−(Zp) is closely related to the complex image of J spectrum

jC = fib(ℓ
ψ−1−−−→ Σ2p−2ℓ).

6See [HRW22].
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this lifts uniquely to the dotted arrows in the following diagram, whose
columns are cofiber sequences:

(12) W (k)

p

��

α // M(R)

d

��
W (k)

��

// W (R)

��
k // (W/M)(R).

This can be understood as a map

(W
p−→ W ) → (M

d−→ W )

of filtered CW-divisors over R, and hence a map of admissible sequences

G♯
a

//

σ♯

��
p♯=p

��

W

α

��

F //

p

��

F∗W

α′

��
V(O(1))♯ //

ℏ♯

��

M
F //

d

��

F∗M
′

d′

��
G♯

a
// W

F
// F∗W.

Note that by Footnote 4, the top left vertical map can be identified as
σ♯ : G♯

a → V(L)♯ for a unique map σ : O → L; similarly, the bottom
left vertical map can be identified as ℏ♯ : V(L)♯ → G♯

a for a unique map
ℏ : L → O. The right vertical column can be viewed as a map (W

p−→
W ) → (M ′ d′

−→ W ) of Cartier-Witt divisors, which by rigidity means that
the map α′ : W → M ′ is an isomorphism.

In particular, the line bundle L ∈ Pic(R) associated to M is equipped
with maps σ : O → L and ℏ : L → O such that σℏ = p; this defines an
R-point of kN

′
, as desired.

• Suppose we are given an R-point (L, σ, ℏ) of kN
′
. Define Mσ and the map

Mσ
dσ,ℏ−−−→ W via the square (6). Then, we obtain a map

(W
p−→ W )

α−→ (Mσ
dσ,ℏ−−−→ W ).

of filtered Cartier-Witt divisors over R. In particular, this is a map of
quasi-ideals over R, so that we obtain a map

k = W (k)/p → W (R)/p
α−→ (W/Mσ)(R).

The data of dσ,ℏ along with this map k → (W/Mσ)(R) is precisely an
R-point of kN, so that we obtain the desired map kN

′ → kN.
□

The same argument shows that if R is a perfectoid ring, the filtered prismati-
zation RN of Definition 3.8 agrees with the stack Spf(π∗TC

−(R))/Gm.

Proposition 3.10. There is an isomorphism (ZN
p )ℏ=0

∼= GdR
a /Gm.
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Proof. Suppose that d : M → W is a filtered Cartier-Witt divisor over a p-
nilpotent ring R such that ℏ(d) = 0 (so d♯ = 0). Recall the map of exact sequences
(11):

V(L)♯ //

d♯=0
��

M

d

��

// F∗M
′

F∗d
′

��}}
G♯

a
// W

F
// F∗W.

Since the left vertical map is zero, there is a dotted map d̃ : F∗M
′ → W as indicated.

We claim:
(∗) d̃ has to factor as

d̃ : F∗M
′ F∗ξ−−→ F∗W

V−→ W

for some ξ : M ′ → W .
We will prove (∗) below. First, note that it implies that ξ can be viewed as a map

ξ : (M ′ → W ) → (W
FV=p−−−−→ W )

of Cartier-Witt divisors; in particular, ξ : M ′ → W must be an isomorphism by
rigidity. Therefore, M is necessarily an extension of F∗W by V(L)♯. We claim that

(∗∗) There is an isomorphism Ext1W (F∗W,G♯
a)

∼= Ga/G
♯
a
∼= GdR

a , which is
Gm-equivariant for the standard action on the target GdR

a , and the action
on G♯

a on the source.
This immediately implies the desired claim, so let us now prove (∗) and (∗∗).

Proof of (∗). It suffices to show that the map V : F∗W → W gives an
isomorphism

HomW (F∗W,F∗W ) → HomW (F∗W,W ).

To prove this, first note that the source is

HomW (F∗W,F∗W ) ∼= HomF∗W
(F∗W,F∗W ) ∼= F∗W,

where the first isomorphism is because F∗W is a quotient of W . From right to left,
this isomorphism sends x ∈ F∗W to F∗W

x−→ F∗W . Therefore, we need to show
that the map

F∗W → HomW (F∗W,W )

sending x ∈ F∗W to F∗W
x−→ F∗W

V−→ W is an isomorphism. Applying HomW (−,W )
to the exact sequence

0 → G♯
a → W

F−→ F∗W → 0,

we obtain

0 → HomW (F∗W,W ) → HomW (W,W ) → HomW (G♯
a,W ).

The middle term is evidently W , so it suffices to show that the kernel of the map
W → HomW (G♯

a,W ) is isomorphic to F∗W .
Observe that the map W → HomW (G♯

a,W ) factors as

(13) W → HomW (G♯
a,G

♯
a) → HomW (G♯

a,W ).
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Indeed, if x ∈ W , the map G♯
a → W sending y 7→ xy lands in W [F ] (since F (xy) =

F (x)F (y) = 0). Therefore, (13) gives a commutative diagram

0 // F∗W
V //

��

W

∼

��

// Ga
∼= HomW (G♯

a,G
♯
a)

��

// 0

0 // HomW (F∗W,W ) // HomW (W,W ) // HomW (G♯
a,W )

The map Ga → HomW (G♯
a,W ) is injective, and the map W → Ga is surjective.

In particular, the kernel of the map W → HomW (G♯
a,W ) can be identified with

the kernel of W → Ga, which is precisely F∗W , as desired. □

Proof of (∗∗). The cofiber sequence

G♯
a → W

F−→ F∗W

induces a cofiber sequence

HomW (W,G♯
a) → HomW (G♯

a,G
♯
a) → Ext1W (F∗W,G♯

a).

The first term is simply G♯
a, and the second term can be identified with Ga by

Footnote 4. It follows that there is a cofiber sequence

G♯
a → Ga → Ext1W (F∗W,G♯

a),

giving the desired identification. □

□

The isomorphism of Proposition 3.10 is very useful: suppose one has a map
X → ZN

p of stacks over A1
ℏ/Gm which one wants to prove is an isomorphism.

Let I → OX denote the ideal given by the zero locus of ℏ, and suppose that
OX is I-complete. If the induced map Xℏ=0 → (ZN

p )ℏ=0 is an isomorphism, then
completeness implies that the original map X → ZN

p is itself an isomorphism. It
often turns out to be much easier to study Xℏ=0. For instance, one can argue in
this manner to show that the stack associated to the even filtration ([HRW22])
on TC−(Zp) is isomorphic to ZN

p , and even relate ZN
p to the complex connective

image-of-J spectrum.
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