Prismatization

S. K. Devalapurkar

In this talk, we will review the filtered prismatization Z;’,\f of Z,,. It turns out to
be conceptually easier to understand the filtered prismatization G?f of G, which
(as a by-product) tells us what Z;\f is supposed to be. To illustrate this, let us briefly
review Arpon’s talk, which described the prismatization G,. Symbols like CAngp
will always mean co-categories of (animated) p-nilpotent Z,-algebras. Throughout,
we will make liberal use of the identifications W/V = G, and W[F] = G¥.

1. Prismatization

Recollection 1.1. If A and B are commutative rings, and we are given a ring
stack R : CAlg, — CAlgg, then any B-scheme X defines an A-stack X* via the
composite

CAlg, 2 CAlgy 25 8.
The global sections T'(X®; O yx) € CAlg 4 can be regarded as some “cohomology of
X7 valued in A-algebras. This is known as transmutation. The driving principle

behind this whole story is that one can fully recover “ A-valued cohomology theories”
on B-schemes via ring stacks as above.

Recall that if A is a p-adic ring, then the de Rham stack associated to G, is
given by the quotient G,/G¥. There is a commutative diagram

FW——FW
iv iP—F*V

taking cones in every direction (and using the fact that F: W — F,W is faithfully
flat), we see that there is an isomorphism

G,./G! = (W/V)/W[F] = F,W/p.

When A = k is a perfect field of characteristic p > 0, the theory of crystalline
cohomology produces a cohomology theory taking values in W(k)-algebras such
that if X is an F,-scheme, then

(1) Lerys(X/W(K)) @w (r), k = Tar(X/k).

Part of this work was done when the author was supported by the PD Soros Fellowship and
NSF DGE-2140743.
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The existence of crystalline cohomology can be explained by the observation that

there is a factorization
dR

G,

~
~
~ €
~
Al

CAlg,,

where € : CAlg;, — CAlgyy () is the functor induced by the augmentation W (k) —
k. This factorization comes from the fact that if R € CAlgy (4, then p = 0 €
GIR(R) = W(R)/p. If X is a k-scheme, then the composite

dR
is the crystalline stack X “¥®, whose coherent cohomology is I'e.ys(X/W (k)). The

isomorphism can be encoded in the following observation:
Observation 1.2. The composite

CAlg;, S CAlgyy gy 2 CAlgy ) —% CAlg,
can be identified with the functor defining the ring stack GI® over k.

One can generalize the pair (W (k),p) to a more general pair (A, d) such that
A/d = A, and ask for a deformation of de Rham cohomology over A/d to A itself;
this would be some version of crystalline cohomology. For instance, we could ask
for a functor R : CAlg, — CAlg, 4 such that if X is an A/d-scheme, the composite

CAlg, % CAlg,,y 58

is somehow related to the de Rham stack of X.

A naive guess for the functor R might be to consider a stack “W/d", viewed as a
functor CAlg, — CAlg, /4 sending R — W (R)/d. To make sense of this, we need
to be able to view the element d € A as an element of W (A); if there were a map
A — W (A), we could simply take the image of d to get the desired element. Having
a map A — W(A) is the same as asking that A be a d-ring, so let us now assume
this. Then, A admits a lift of Frobenius ¢, and we can ask that the composite

CAlg,,y < CAlg, % CAlg, 225 CAlg, 4
be identified with GIR. This is the same as asking that the composite
A— W(A) = W(A/d) L W(A/d)
send d to a unit multiple of p. This composite sends
d—(d,8(d),---) = (0,6(d),---) = p(d(d),---),

so we are simply asking that d(d) € A/d be a unit. If we further ask that A be
d-complete, then this is the same as asking that 6(d) be a unit in A.

Combining the discussion above, we end up with the definition of an oriented
prism:

Definition 1.3. An oriented prism is a pair (A, d) such that A is equipped with a
0-ring structure, A is (p, d)-adically complete, and 6(d) € A is a unit.
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If (A,d) is an oriented prism, the functor W/d : CAlg, — CAlgy, 4 is well-
defined, and therefore can be regarded as an analogue of the crystalline stack of
G,; we will denote it by G_, and refer to it as the prismatization of G,. Let us
make a few points:

a’

e The “de Rham comparison theorem” is now baked into the construction:
namely, there is an isomorphism F,G, = GI® as stacks over A/d.

e Similarly, if d = p, the “crystalline comparison theorem” is simply the
observation that as stacks over A, there is an isomorphism F,.G, = G5,

This whole picture can be “globalized” over all prisms as follows (see [BL22al,
BL22b, [Dri22|). Namely, if R is a p-nilpotent ring, let us say that a pair (I, « :
I — W(R)) of an invertible W(R)-module I and a map « is a Cartier- Witt divisor
if the composite

IS W(R) 2SR

is nilpotent, and the composite
IS WMR SR

generates the unit ideal of R. The functor R — {Cartier-Witt divisors on R} de-
fines a functor Z,, : CAlgy — 8. If (A,d) is a oriented prism, and A — R is a map,
there is a unique d-ring map A — W(R); the tensor product (d) @4 W(R) — W (R)
is a Cartier-Witt divisor if (p,d) is nilpotent in R. Therefore, we obtain a map
Spf(A) — Z,,.

Definition 1.4. Let X be a bounded p-adic formal scheme. Let X : CAngP -8

be the functor sending R to the groupoid of Cartier-Witt divisors I < W (R) and
a map Spec W(R)/I — X of Spf(Z,)-schemes. By construction, there is a map
X =7,

P

Note that by construction, if (A4,d) is an oriented prism, the pullback of G,
along the map Spf(A) — Z,, is isomorphic to the stack we denoted G, above.

2. Filtered prismatization and the Hodge+conjugate filtrations

Our goal in this talk is to understand the filtered prismatization. Again, the
whole story will be modeled after the structures present in crystalline cohomology.
As a precursor to this, let us try to understand the structures present in de Rham
cohomology over a perfect field k of characteristic p > 0: namely, the Hodge and
conjugate filtrations. Let X be a smooth k-scheme.

(a) The Hodge filtration on de Rham cohomology is a decreasing filtration;
the associated filtered k-module has underlying object I'qr (X/k), and has
associated graded given by I'yggs(X/k). The ring stack defining de Rham
cohomology is

GIR = (W/V)/W[F] = cofib(GE @ F,w 77V iy
while the ring stack defining Hodge cohomology is

Gl — G, G (-1)[1] =2 W/V & GE(=1)[1].
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One natural way to interpolate between these two stacks is by working over
A}/G,, with coordinatd]| i. The universal line bundle O(1) over A}/G,,
has a tautological section i : O — O(1). We can then consider the cofiber
of the composite

LI x,a T a
GIRA = cofib(V(O(—1)F & EW 9% G @ pow 07V

It turns out that this quotient is indeed a ring stack over A}.L /G, and the
resulting cohomology theory is Hodge-filtered de Rham cohomology.

(b) The conjugate filtration on de Rham cohomology is an increasing filtra-
tion; the associated filtered k-module has underlying object Tqr(X/k),
and has associated graded given by I'igg (X () /k). Therefore, we are look-
ing for a stack G which interpolates between GIF and F,G!de =
F.G, ® F,G!(1)[1]. (Note that the weight is +1 and not —1, because
the filtration is increasing!) To motivate this construction, recall how the
Cartier isomorphism comes about in the stacky picture: the map Gf — G,
defining GIR factors as the composite G, - a;, < Gy, so that

GIR > G, /a, x Bker(G: — a,) = F,G, & F,G4[1].

This isomorphism is not one of ring stacks, but it does indicate to us
that the conjugate filtration on GIF should be obtained by “degenerating

F.G# Y G! to zero”. More precisely, let us work over the stack Al/G,,
with coordinateﬂ o in weight —1, and let G, be the group scheme over
Al/G,, defined by the pushout

FGi—Y > G

I

FV(O(1))f —= Gy

Note that G, /F.V(O(1))* 2 o,,. Then, there is a map G, — G, of group
schemes over Al /G,,, given by the square

FG! —Y > G

| ]

EV(0(1))f —> G

The map G, — G, is a quasi-ideal, and we will write G to denote its
cofiber. This is a ring stack, and it encodes the conjugate filtration on de
Rham cohomology.

1Everywhere a subscript i shows up below, one can replace it by ¢ to obtain the notation
used in [Bha22].

2Eve]rywhere a subscript ¢ shows up below, one can replace it by u to obtain the notation
used in [Bha22]|.
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One can translate the preceding discussion to Witt vector models, too.
Namely, define a group scheme M, over Al/G,, defined by the pushout

(2) G{ w

ot l pushout l

V(O(1))f — M, .

Note that M, /V(O(1))! = F,W. Then, there is a map d, : My — W of
group schemes over Al /G,,, given by the square

(3) Gt Vf
V(O(1)) —= W

The map M, — W is a quasi-ideal, and F.W/M, can be shown to be
isomorphic to G¢°™. (This is actually not very difficult: it boils down to
relating the above squares to the argument we used at the beginning to
prove the isomorphism GI® = F,W/p.)

Remark 2.1. The diagram can be extended slightly as follows: there is in fact
a commutative diagram whose rows are cofiber sequences

F

(4) G! W W

gﬁl pushout ip
VO —> M, —= F.W

T

Gt W FW.
F

Our final stop in characteristic p is to understand how to glue the conjugate and
Hodge filtrations together. For this, we need to work over a base which encodes
two filtrations on the same k-module: the most natural candidate is

C := (Speck[o, h)/oh) /G,

where o has weight —1 and & has weight 1. This looks like the G,,-quotient of two
coordinate axes. The universal line bundle £ over C has two maps ¢ : O — £ and
h: L — O; its restriction to AL/G,, is O(1), while its restriction to A} /G, is
0(-1).

We can now define a ring stack G¢ which glues the conjugate and Hodge
filtrations: this will have the property that

c _ i C _ dR.+
F.Gy |h=0 = G, Gy lo=0 = G5 ™.

First, note that we can still define M, over C via the same pushout square . To
obtain the Hodge filtration in a manner compatible with the conjugate filtration,
we therefore want a deformation dy.p : M, — W of the map d, (from (b) above)
such that:
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e When o = 0, the map d, 5 : M, — W can be identified with the composite

#
V(L) e FW 25w
e When h =0, the map d, 5 : M, — W can be identified with d,.

Note that when o = 0, we can identify M, with V(O(—1)); so we only need to
modify the square as follows:

(5) G{ w

oﬁl p

\7((9(1))ﬁ T Gg —W.
This pushout defines the desired map d, p : M, — W. Note that the composite

# #
G vt L Gl
is zero, since ho = 0.

Remark 2.2. As with the story from G, the diagram can be extended
slightly as follows: there is in fact a commutative diagram whose rows are cofiber
sequences

F

(6) Gi w F.W

ot \L pushout lp

VO®1) —= M, —E~ FW

G 1474 FW.
F

One can check that the map d,  : M, — W defines a quasi-ideal, so that:

Definition 2.3. Let G¢ denote the ring stack over C' defined by cofib(M, —)dg'h
W). Note that
GYloso = W/p, GS|pzo = F.W/p.

We will call the inclusions Speck = C,+9 € C and Speck = Chxo € C the Hodge-
Tate and de Rham points, respectively.

We can now finally start to study structures on crystalline cohomology, so
that all stacks below will live over W (k). The key structure showing up here is
the Nygaard filtration. If X is a smooth affine k-scheme, it is characterized by
the following property: NZITqyo(X/W (k)) is the subcomplex of Tepys(X/W (k)
on which the crystalline Frobenius ¢ is divisible by p/. Using this, one can show
that the graded pieces NTcpys(X/W (k)) can be identified with F;"™ T4 (X/k){i}.
Here, {i} simply denotes tensoring by the ideal (p*)/(p'*!). Another important
property of the Nygaard filtration is that if X is F-liftable to a W (k)-scheme X ,
then NZIT ¢,y (X/W (k) = pmax(j’*’o)Fl*{dngR()Z'/W(k)); in other words, it mixes
the Hodge and p-adic filtrations.
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We would therefore like to construct a mixed characteristic ring stack G2
which encodes the Nygaard filtration on crystalline cohomology. In particular, the
underlying stack of G2 should be GI® (now over Spf W (k)!). Recall that

m.TC™ (k) = W(k)[o, hl/(ah - p),

and that the resulting fi-adic filtration on TC™ (X)) encodes the Nygaard filtration
on prismatic cohomology. Motivated by this, let us define

(7) KN = SpE(W (K)[o, B/ (ol = p))/Gm,
where o has weight —1 and % has weight 1. By construction, & Qw k) k = C, and
QCoh (k™) is precisely the co-category of filtered W (k)-modules over (p)®. Over k™,

the definition of M,, etc., still go through, and we can define a map dy  : My - W
via the pushout

(8) G w

o‘ul p

V(O())f —= Gf —— W,

Note that the composite
g o RNt
G! — V(O(1))F — G
is no longer zero, but is rather p (since fic = p).
Remark 2.4. As with the story from G and G¢, the diagram can be

extended slightly as follows: there is in fact a commutative diagram whose rows are
cofiber sequences

F

(9) G W W

ol \L pushout lp
F

p'=p|V(O(1))} —= M, ——= F,W

G! W FW.
F

Again, one can check that the map d, 5 : M, — W defines a quasi-ideal, so
that:

Definition 2.5. Let G)¥ denote the filtered prismatization of G, defined as the
ring stack over k™ given by cofib(M, d”—’h> W). Note that
(10) Goloro = W/p = Gy, GYllnzo = FW/p = G, G0 = G’

We will call the inclusions Spf W (k) = kJ,, € k™ and Spf W (k) = k', C kN
the Hodge-Tate and de Rham points, respectively. If X is a k-scheme, we obtain a
stack XN over kN defined by the functor

N
CAlgx 2% CAlg, 25 8.

Let Hx(X) € QCoh(kN) denote the pushforward of the structure sheaf along the
morphism X~ — kN, and let N=*T' (X/A) denote its underlying W (k)-module.
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Remark 2.6. Let us briefly mention why GX encodes the Nygaard filtration.
Firstly, we need to show that the Frobenius on I' (X/W (k)) factors through N=*T' (X/A).
This is essentially a consequence of the fact that the map W 2 W fits into a com-
mutative diagram

W——M, — F.W

T
Taking vertical cofibers, we obtain a factorization

W/p— G} — F.W/p
of the Frobenius on the ring stack W/p. Secondly, we need to show that N7,y (X/W (k))
can be identified with F{°™T4g(X/k){i}. This has a rather fun argument; see
[Bha22|, Theorem 3.3.5(1)]. It is a topological analogue of the observation that
TC™(X)/h ~ THH(X), which encodes the conjugate filtration (this uses that
the cyclotomic Frobenius gives an equivalence THH(X)[1/0] £ THH(X)!2/P ~
HP(X/k), and that THH(X)/o = HH(X/k)).

Remark 2.7. The Hodge-Tate and de Rham points of k™ can be understood
homotopy-theoretically as follows: the Hodge-Tate point is related to the map
@ : TC™(k)[1/0] — TP(k) ~ W (k)" induced by the cyclotomic Frobenius, while
the de Rham point is related to the canonical map can : TC™ (k) — TP(k). The
isomorphisms of correspond to the observation that if X is quasisyntomic over
k, then TC™ (X)[1/0] gives a Frobenius untwist of TP(X); since TP(X) encodes
the crystalline cohomology of X, TC™ (X)[1/0] encodes a Frobenius untwist of
crystalline cohomology. The resulting o-adic filtration (with respect to the lattice
TC™(X) — TC™ (X)[1/0]) encodes the conjugate filtration.

3. Filtered prismatization over Z,

Let us now turn to mixed characteristic (i.e., deforming from A/d to A, where
(A, d) is an oriented prism). Recall from the beginning of the talk that the key idea
was deforming the quasi-ideal W 2 W over Ald to W 9 W over A. Now, we

dU . . .
essentially want to deform the quasi-ideal M,, Z2% W. Recall that M, sits in an
extension
0— V(L) = M, — F,W — 0.

This motivates:

Definition 3.1. Let R be a p-nilpotent ring. An admissible W-module M is a
W-module scheme M which sits in an extension of the form

0—= VL) = M- FM =0
for some £ € Pic(R) and an invertible W-module M’.

Remark 3.2. Every invertible W-module is admissible. Moreover, there is a unique
extension witnessing the admissibility of a W-module: indeed, extensions form a
torsor for Homy, (G, F.W), but this vanishesﬂ

3Since F.W has a filtration whose graded pieces are FI'Gg, it suffices to show that
HomW(Gg,FfGa) = 0 for n > 0. Such a map is G,-equivariant (because of the Teichmuller
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Construction 3.3. One can prove that there is an equivalence of groupoids Pic(W (R)) ~
Map(Spec(R), BW ™). Given I € Pic(W(R)), we obtain an exact sequence

0= I ®wir GE = I Qwm W 5 I Qw(m) FW = 0.

If £ € Pic(R) and 0 : I @y gy R — £ is a map of line bundles over R, then define
M, via the pushout

I @w(ry G ——1Qwr) W

\L pushout \L

V(L)ﬁ _ M,

g

There is then a cofiber sequence
0= V(L) = My 55 T @y gy F.W =0,

and M, is an admissible W-module over R. In fact, fpqc-locally on R, every
admissible W-module arises in this way.

Motivated by this construction, we are led to consider:

Definition 3.4. Let R be a p-nilpotent ring. A filtered Cartier-Witt divisor
on R is an admissible W-module M and a map d : M — W of admissible
W-modules, such that the induced map F,M’' — F,W is obtained as F, of a
Cartier-Witt divisor over R. Let ZZ)\I denote the functor CAlg — 8 sending R —
{filtered Cartier-Witt divisors on R}.

Example 3.5. Let I & W(R) be a Cartier-Witt divisor. Then, we obtain a
map do : I ®wry W — W, which is a filtered Cartier-Witt divisor. Indeed,
M = I ®w gy W is admissible (in fact, invertible!) by Construction and the
map M’ — W is simply given by the map

M = F I @y W 224 W(R) @wm W = W.

This is indeed a Cartier-Witt divisor. This construction produces a map jyr :

zZ, — Zg}r, which exhibits it as an open substack of sz)\r .

Example 3.6. Let d : M — W be a filtered Cartier-Witt divisor over R, so that
there is a map of admissible sequences

(11) V(L) ——= M —— F,.M'

\Ld” id lF*d’
Gg — W —FW.

It turns out that that the map d* arises via an actual morphism h(d) : £ — G, of
line bundlesﬁ so that we obtain a map £ : Z;\f — A} /Gy, The fiber (Zg}\f),#o over

map G, — W>), so such a map is the same as a primitive element of OGE >~ Zp(t) of weight

p™. All such elements are zero.
4 Tt suffices to observe that

Homy, (G, GY) =2 Homg (G4, G%) = Homg (Ga,Ga) = Ga.

The first isomorphism comes from the fact that the W-action on Gﬁa factors through W — Gg;
the second isomorphism comes from Cartier duality over BGy,; the third isomorphism is obvious.
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G,,/G.,, consists of those Cartier-Witt divisors for which d is nonzero, i.e., d* is an
isomorphism. In this case, the Cartier-Witt divisor d : M — W is encoded entirely
by the Cartier-Witt divisor d’ : M’ — W, so that we obtain an isomorphism

jar : Zy = (Z) )nzo € 2,
exhibiting Z,, as an open substack of Z;,\f. Note that jqr and jgr are disjoint —
for any filtered Cartier-Witt divisor in the image of jgr, the map d? is nilpotent!

Remark 3.7. In homotopy theory, the map A : Z;\f — A} /G,, encodes the
filtration on TC™(Z,) arising via the homotopy fixed points spectral sequence.
The points jgyr and jgr are supposed to correspond to the maps TC™ = TP
given by the cyclotomic Frobenius and the canonical map, respectively. Note that
o does not actually exist in mTC™(Z,) — rather, the advantage of the stacky
perspective is that we can do everything locally. For instance, there is a cover
TC™ (Z,) - TC™ (Z,/S[p]), where the map S[p] — Z, sends p + p, and the Eq-
ring TC™(Z,/S[p]) is eve its homotopy groups are given by Z,[p][c, h]/(ch —
(p — p)). We can therefore construct the localization TC™ (Z,/S[p])[1/c]; as long
as we can extend this localization to the entire cosimplicial diagram induced by the
cover TC™ (Z,) — TC™ (Z,/S[p]), we can localize the stack associated to the even
ﬁltratiorﬁ on TC™(Z,), as well.

It turns out that if d : M — W is a filtered Cartier-Witt divisor, then d defines
a quasi-ideal; we will not prove this here. This implies that the quotient W/M is
in fact a ring stack. In particular:

Definition 3.8. Let G denote the ring stack over Z;\r given locally by the assign-
ment

(d: M — W) e Z)(R)— (W/M)(R) € CAlg.
This will be called the filtered prismatization of the affine line. Using Recollec-
tion [I.I} we can now define the filtered prismatization of any bounded p-adic for-
mal scheme X. Let us assume that X = Spf(A) is affine, for simplicity. Then,
XN Z;\f is the stack whose functor of points is given by

CAlg 5 R — {filtered CW-divisors d : M — W, and A — (W/M)(R)} € 8.
We will close with two results.

Proposition 3.9. The filtered prismatization k™ of Definition agrees with the
stack Spf(m, TC™(k))/Gm of (7).

PROOF. Let us write k' := Spf(m,TC™ (k))/Gm, so that if R is a p-nilpotent
ring, then kN'(R) is the groupoid of tuples (£, 0, k) of £ € Pic(R), 0: O — £, and
h: L — O such that oh = p. We will build maps &N — k™ and &N — kN (which
will clearly be inverse to each other) as follows:

e To define a map kN — k', we need to define a map kN(R) — kN'(R)

for every p-nilpotent ring R. Suppose we are given a point of k™ (R), i.e.,
a filtered Cartier-Witt divisor d : M — W and k — (W/M)(R). Then,

5In fact, it is equivalent (at least) as an E;-ring to (TZOZtZ/p)hsl. Using this cover of
TC~(Zp), one can even show that TC™(Z)) is closely related to the complex image of J spectrum
jo = fib(e L5 n2e-2p),

6See [HRW22).
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this lifts uniquely to the dotted arrows in the following diagram, whose
columns are cofiber sequences:

(12) W (k) — ="~ = M(R)
P
W(k) - - = =W(R)
l |
k—— (W/M)(R).

This can be understood as a map
W ZBw)— (ML w)

of filtered CW-divisors over R, and hence a map of admissible sequences

G! w—Lsrw
ot a o
|l
pi=p | V(O(1))* M—EsFM
h”l id J{d/
Gi 144 FW.

F

Note that by Footnote [} the top left vertical map can be identified as
ot : GE — V(L) for a unique map o : O — £L; similarly, the bottom
left vertical map can be identified as hf : V(£)* — G for a unique map
hi: L — O. The right vertical column can be viewed as a map (W %
W) — (M’ <, W) of Cartier-Witt divisors, which by rigidity means that
the map o’ : W — M’ is an isomorphism.

In particular, the line bundle £ € Pic(R) associated to M is equipped
with maps 0 : O — £ and A : L — O such that oh = p; this defines an
R-point of kN/, as desired.

e Suppose we are given an R-point (£, 0, k) of kN, Define M, and the map

o,k

d
M, —— W via the square (6)). Then, we obtain a map

W 2w & (M, 22 w).

of filtered Cartier-Witt divisors over R. In particular, this is a map of
quasi-ideals over R, so that we obtain a map

k=W(k)/p— W(R)/p = (W/M,)(R).
The data of d,,p along with this map k — (W/M,)(R) is precisely an
R-point of kN, so that we obtain the desired map BN — kN,
a

The same argument shows that if R is a perfectoid ring, the filtered prismati-
zation RN of Definition agrees with the stack Spf(m.TC™(R))/Gn.

Proposition 3.10. There is an isomorphism (Z,j,\[)h:o ~ GIR/G,,.
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PROOF. Suppose that d : M — W is a filtered Cartier-Witt divisor over a p-
nilpotent ring R such that A(d) = 0 (so d* = 0). Recall the map of exact sequences

@)

7
e
dt=0 d s F.d
e
»

G§14>W—F>F*W

Since the left vertical map is zero, there is a dotted map d: F.M' — W as indicated.
We claim:

(*) d has to factor as
d: rM ZS pw Sw
for some & : M’ — W.

We will prove (x) below. First, note that it implies that £ can be viewed as a map

FV=p
—_—

€ (M W) = (W w)

of Cartier-Witt divisors; in particular, £ : M’ — W must be an isomorphism by
rigidity. Therefore, M is necessarily an extension of F,W by V(£)*. We claim that
(#%) There is an isomorphism Exti, (F.W,G!) = G,/G! = GIR, which is

G,,-equivariant for the standard action on the target GI®, and the action
on G¥ on the source.

This immediately implies the desired claim, so let us now prove (x) and ().
PROOF OF (x). It suffices to show that the map V : F,.W — W gives an
isomorphism
Homy, (F,.W, F.W) — Homy, (E.W, W).
To prove this, first note that the source is

Homyy, (F.W, F.W) = Hom . v (F.W, F,W) = F,W,

where the first isomorphism is because F,W is a quotient of W. From right to left,
this isomorphism sends =z € F,W to F,.W 5 F,W. Therefore, we need to show
that the map

F.W — Homyy (F.W, W)
sending z € F,W to F,W % F,W 5 W is an isomorphism. Applying Homy, (—, W)

to the exact sequence
0-Gl >w 5 FW o,
we obtain

0 — Homyy, (F.W, W) — Homy,, (W, W) — Homy, (G?, W).

The middle term is evidently W, so it suffices to show that the kernel of the map
W — Homy, (G¥, W) is isomorphic to F, V.
Observe that the map W — Homy, (G%, W) factors as

(13) W — Homy, (G, GE) — Homyy (G, W).
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Indeed, if x € W, the map G¥, — W sending y + xy lands in W[F] (since F(zy) =
F(z)F(y) =0). Therefore, (13) gives a commutative diagram

0 W v W G, = Homy, (G}, GE) ——0

| ) l

0 — Homyy, (F.W, W) — Homy, (W, W) Homy, (G, W)

The map G, — Homy,, (G, W) is injective, and the map W — G, is surjective.
In particular, the kernel of the map W — Homy, (G¥, W) can be identified with
the kernel of W — G, which is precisely F,W, as desired. O

PROOF OF (xx). The cofiber sequence
G ow L Rw
induces a cofiber sequence
Homyy (W, G) — Homyy (G, GE) — Extyy (W, GF).

The first term is simply G#, and the second term can be identified with G, by
Footnote [ It follows that there is a cofiber sequence

G! = G, — Extyy (F,W,G}),
giving the desired identification. O
|

The isomorphism of Proposition is very useful: suppose one has a map
X — Z;f of stacks over A;li/Gm which one wants to prove is an isomorphism.
Let J — Ox denote the ideal given by the zero locus of h, and suppose that
Ox is J-complete. If the induced map Xp—g — (Z;\f) h—0 18 an isomorphism, then
completeness implies that the original map X — Z;f is itself an isomorphism. It
often turns out to be much easier to study X,—g. For instance, one can argue in
this manner to show that the stack associated to the even filtration ([HRW22]|)
on TC™ (Z,) is isomorphic to Z;\f, and even relate Z;\f to the complex connective
image-of-J spectrum.
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