Prismatization

S. K. Devalapurkar

In this talk, we will review the filtered prismatization $\mathbf{Z}_{p}^{\mathcal{N}}$ of \mathbf{Z}_{p}. It turns out to be conceptually easier to understand the filtered prismatization $\mathbf{G}_{a}^{\mathcal{N}}$ of \mathbf{G}_{a}, which (as a by-product) tells us what $\mathbf{Z}_{p}^{\mathcal{N}}$ is supposed to be. To illustrate this, let us briefly review Arpon's talk, which described the prismatization $\mathbf{G}_{a}^{\triangle}$. Symbols like $\mathrm{CAlg}_{\mathbf{Z}_{p}}$ will always mean ∞-categories of (animated) p-nilpotent \mathbf{Z}_{p}-algebras. Throughout, we will make liberal use of the identifications $W / V=\mathbf{G}_{a}$ and $W[F]=\mathbf{G}_{a}^{\sharp}$.

1. Prismatization

Recollection 1.1. If A and B are commutative rings, and we are given a ring stack $\mathcal{R}: \mathrm{CAlg}_{A} \rightarrow \mathrm{CAlg}_{B}$, then any B-scheme X defines an A-stack $X^{\mathcal{R}}$ via the composite

$$
\mathrm{CAlg}_{A} \xrightarrow{\mathcal{R}} \mathrm{CAlg}_{B} \xrightarrow{X} \mathcal{S} .
$$

The global sections $\Gamma\left(X^{\mathcal{R}} ; \mathcal{O}_{X^{\mathcal{R}}}\right) \in \mathrm{CAlg}_{A}$ can be regarded as some "cohomology of X " valued in A-algebras. This is known as transmutation. The driving principle behind this whole story is that one can fully recover " A-valued cohomology theories" on B-schemes via ring stacks as above.

Recall that if \bar{A} is a p-adic ring, then the de Rham stack associated to \mathbf{G}_{a} is given by the quotient $\mathbf{G}_{a} / \mathbf{G}_{a}^{\sharp}$. There is a commutative diagram

taking cones in every direction (and using the fact that $F: W \rightarrow F_{*} W$ is faithfully flat), we see that there is an isomorphism

$$
\mathbf{G}_{a} / \mathbf{G}_{a}^{\sharp} \cong(W / V) / W[F] \cong F_{*} W / p .
$$

When $\bar{A}=k$ is a perfect field of characteristic $p>0$, the theory of crystalline cohomology produces a cohomology theory taking values in $W(k)$-algebras such that if X is an \mathbf{F}_{p}-scheme, then

$$
\begin{equation*}
\Gamma_{\text {crys }}(X / W(k)) \otimes_{W(k), \varphi} k \cong \Gamma_{\mathrm{dR}}(X / k) . \tag{1}
\end{equation*}
$$

[^0]The existence of crystalline cohomology can be explained by the observation that there is a factorization

where $\epsilon: \mathrm{CAlg}_{k} \rightarrow \mathrm{CAlg}_{W(k)}$ is the functor induced by the augmentation $W(k) \rightarrow$ k. This factorization comes from the fact that if $R \in \mathrm{CAlg}_{W(k)}$, then $p=0 \in$ $\mathbf{G}_{a}^{\mathrm{dR}}(R)=W(R) / p$. If X is a k-scheme, then the composite

$$
\mathrm{CAlg}_{W(k)} \xrightarrow{\mathbf{G}_{a}^{\mathrm{dR}}} \mathrm{CAlg}_{k} \xrightarrow{X} \mathcal{S}
$$

is the crystalline stack $X^{\text {crys }}$, whose coherent cohomology is $\Gamma_{\text {crys }}(X / W(k))$. The isomorphism (1) can be encoded in the following observation:

Observation 1.2. The composite

$$
\mathrm{CAlg}_{k} \xrightarrow{\epsilon} \mathrm{CAlg}_{W(k)} \xrightarrow{\varphi} \mathrm{CAlg}_{W(k)} \xrightarrow{W / p} \mathrm{CAlg}_{k}
$$

can be identified with the functor defining the ring stack $\mathbf{G}_{a}^{\mathrm{dR}}$ over k.
One can generalize the pair $(W(k), p)$ to a more general pair (A, d) such that $A / d=\bar{A}$, and ask for a deformation of de Rham cohomology over A / d to A itself; this would be some version of crystalline cohomology. For instance, we could ask for a functor $\mathcal{R}: \mathrm{CAlg}_{A} \rightarrow \mathrm{CAlg}_{A / d}$ such that if X is an A / d-scheme, the composite

$$
\mathrm{CAlg}_{A} \xrightarrow{\mathcal{R}} \mathrm{CAlg}_{A / d} \xrightarrow{X} \mathcal{S}
$$

is somehow related to the de Rham stack of X.
A naive guess for the functor \mathcal{R} might be to consider a stack " W / d ", viewed as a functor $\mathrm{CAlg}_{A} \rightarrow \mathrm{CAlg}_{A / d}$ sending $R \mapsto W(R) / d$. To make sense of this, we need to be able to view the element $d \in A$ as an element of $W(A)$; if there were a map $A \rightarrow W(A)$, we could simply take the image of d to get the desired element. Having a map $A \rightarrow W(A)$ is the same as asking that A be a δ-ring, so let us now assume this. Then, A admits a lift of Frobenius φ, and we can ask that the composite

$$
\mathrm{CAlg}_{A / d} \xrightarrow{\epsilon} \mathrm{CAlg}_{A} \xrightarrow{\varphi} \mathrm{CAlg}_{A} \xrightarrow{W / d} \mathrm{CAlg}_{A / d}
$$

be identified with $\mathbf{G}_{a}^{\mathrm{dR}}$. This is the same as asking that the composite

$$
A \rightarrow W(A) \rightarrow W(A / d) \xrightarrow{\varphi} W(A / d)
$$

send d to a unit multiple of p. This composite sends

$$
d \mapsto(d, \delta(d), \cdots) \mapsto(0, \delta(d), \cdots) \mapsto p(\delta(d), \cdots)
$$

so we are simply asking that $\delta(d) \in A / d$ be a unit. If we further ask that A be d-complete, then this is the same as asking that $\delta(d)$ be a unit in A.

Combining the discussion above, we end up with the definition of an oriented prism:
Definition 1.3. An oriented prism is a pair (A, d) such that A is equipped with a δ-ring structure, A is (p, d)-adically complete, and $\delta(d) \in A$ is a unit.

If (A, d) is an oriented prism, the functor $W / d: \mathrm{CAlg}_{A} \rightarrow \mathrm{CAlg}_{A / d}$ is welldefined, and therefore can be regarded as an analogue of the crystalline stack of \mathbf{G}_{a}; we will denote it by $\mathbf{G}_{a}^{\triangle}$, and refer to it as the prismatization of \mathbf{G}_{a}. Let us make a few points:

- The "de Rham comparison theorem" is now baked into the construction: namely, there is an isomorphism $F_{*} \mathbf{G}_{a}^{\triangle} \cong \mathbf{G}_{a}^{\mathrm{dR}}$ as stacks over A / d.
- Similarly, if $d=p$, the "crystalline comparison theorem" is simply the observation that as stacks over A, there is an isomorphism $F_{*} \mathbf{G}_{a}^{\triangle} \cong \mathbf{G}_{a}^{\text {crys }}$.
This whole picture can be "globalized" over all prisms as follows (see BL22a, BL22b, Dri22]). Namely, if R is a p-nilpotent ring, let us say that a pair (I, α : $I \rightarrow W(R)$) of an invertible $W(R)$-module I and a map α is a Cartier-Witt divisor if the composite

$$
I \xrightarrow{\alpha} W(R) \xrightarrow{\text { Res }} R
$$

is nilpotent, and the composite

$$
I \xrightarrow{\alpha} W(R) \xrightarrow{\delta} R
$$

generates the unit ideal of R. The functor $R \mapsto\{$ Cartier-Witt divisors on $R\}$ defines a functor $\mathbf{Z}_{p}^{\triangle}: \mathrm{CAlg}_{\mathbf{Z}_{p}} \rightarrow \mathcal{S}$. If (A, d) is a oriented prism, and $A \rightarrow R$ is a map, there is a unique δ-ring map $A \rightarrow W(R)$; the tensor product $(d) \otimes_{A} W(R) \rightarrow W(R)$ is a Cartier-Witt divisor if (p, d) is nilpotent in R. Therefore, we obtain a map $\operatorname{Spf}(A) \rightarrow \mathbf{Z}_{p}^{\triangle}$.

Definition 1.4. Let X be a bounded p-adic formal scheme. Let $X^{\triangle}: \mathrm{CAlg}_{\mathbf{z}_{p}} \rightarrow \mathcal{S}$ be the functor sending R to the groupoid of Cartier-Witt divisors $I \xrightarrow{\alpha} W(R)$ and a map $\operatorname{Spec} W(R) / I \rightarrow X$ of $\operatorname{Spf}\left(\mathbf{Z}_{p}\right)$-schemes. By construction, there is a map $X^{\triangle} \rightarrow \mathbf{Z}_{p}^{\triangle}$.

Note that by construction, if (A, d) is an oriented prism, the pullback of \mathbf{G}_{a}^{Δ} along the map $\operatorname{Spf}(A) \rightarrow \mathbf{Z}_{p}^{\triangle}$ is isomorphic to the stack we denoted $\mathbf{G}_{a}^{\triangle}$ above.

2. Filtered prismatization and the Hodge+conjugate filtrations

Our goal in this talk is to understand the filtered prismatization. Again, the whole story will be modeled after the structures present in crystalline cohomology. As a precursor to this, let us try to understand the structures present in de Rham cohomology over a perfect field k of characteristic $p>0$: namely, the Hodge and conjugate filtrations. Let X be a smooth k-scheme.
(a) The Hodge filtration on de Rham cohomology is a decreasing filtration; the associated filtered k-module has underlying object $\Gamma_{\mathrm{dR}}(X / k)$, and has associated graded given by $\Gamma_{\mathrm{Hdg}}(X / k)$. The ring stack defining de Rham cohomology is

$$
\mathbf{G}_{a}^{\mathrm{dR}}=(W / V) / W[F]=\operatorname{cofib}\left(\mathbf{G}_{a}^{\sharp} \oplus F_{*} W \xrightarrow{(x, a) \mapsto x+V a} W\right),
$$

while the ring stack defining Hodge cohomology is

$$
\mathbf{G}_{a}^{\mathrm{Hdg}}=\mathbf{G}_{a} \oplus \mathbf{G}_{a}^{\sharp}(-1)[1] \cong W / V \oplus \mathbf{G}_{a}^{\sharp}(-1)[1] .
$$

One natural way to interpolate between these two stacks is by working over $\mathbf{A}_{\hbar}^{1} / \mathbf{G}_{m}$ with coordinat $\rrbracket^{1} \hbar$. The universal line bundle $\mathcal{O}(1)$ over $\mathbf{A}_{\hbar}^{1} / \mathbf{G}_{m}$ has a tautological section $\hbar: \mathcal{O} \rightarrow \mathcal{O}(1)$. We can then consider the cofiber of the composite

$$
\mathbf{G}_{a}^{\mathrm{dR},+}:=\operatorname{cofib}\left(\mathcal{V}(\mathcal{O}(-1))^{\sharp} \oplus F_{*} W \xrightarrow{\hbar^{\sharp}, \mathrm{id}} \mathbf{G}_{a}^{\sharp} \oplus F_{*} W \xrightarrow{(x, a) \mapsto x+V a} W\right) .
$$

It turns out that this quotient is indeed a ring stack over $\mathbf{A}_{\hbar}^{1} / \mathbf{G}_{m}$, and the resulting cohomology theory is Hodge-filtered de Rham cohomology.
(b) The conjugate filtration on de Rham cohomology is an increasing filtration; the associated filtered k-module has underlying object $\Gamma_{\mathrm{dR}}(X / k)$, and has associated graded given by $\Gamma_{\mathrm{Hdg}}\left(X^{(1)} / k\right)$. Therefore, we are looking for a stack $\mathbf{G}_{a}^{\text {conj }}$ which interpolates between $\mathbf{G}_{a}^{\mathrm{dR}}$ and $F_{*} \mathbf{G}_{a}^{\mathrm{Hdg}}=$ $F_{*} \mathbf{G}_{a} \oplus F_{*} \mathbf{G}_{a}^{\sharp}(1)[1]$. (Note that the weight is +1 and not -1 , because the filtration is increasing!) To motivate this construction, recall how the Cartier isomorphism comes about in the stacky picture: the map $\mathbf{G}_{a}^{\sharp} \rightarrow \mathbf{G}_{a}$ defining $\mathbf{G}_{a}^{\mathrm{dR}}$ factors as the composite $\mathbf{G}_{a}^{\sharp} \rightarrow \alpha_{p} \hookrightarrow \mathbf{G}_{a}$, so that

$$
\mathbf{G}_{a}^{\mathrm{dR}} \cong \mathbf{G}_{a} / \alpha_{p} \times B \operatorname{ker}\left(\mathbf{G}_{a}^{\sharp} \rightarrow \alpha_{p}\right) \cong F_{*} \mathbf{G}_{a} \oplus F_{*} \mathbf{G}_{a}^{\sharp}[1] .
$$

This isomorphism is not one of ring stacks, but it does indicate to us that the conjugate filtration on $\mathbf{G}_{a}^{\mathrm{dR}}$ should be obtained by "degenerating $F_{*} \mathbf{G}_{a}^{\sharp} \xrightarrow{V} \mathbf{G}_{a}^{\sharp}$ to zero". More precisely, let us work over the stack $\mathbf{A}_{\sigma}^{1} / \mathbf{G}_{m}$ with coordinate ${ }^{2} \sigma$ in weight -1 , and let G_{σ} be the group scheme over $\mathbf{A}_{\sigma}^{1} / \mathbf{G}_{m}$ defined by the pushout

Note that $G_{\sigma} / F_{*} \mathcal{V}(\mathcal{O}(1))^{\sharp} \cong \alpha_{p}$. Then, there is a map $G_{\sigma} \rightarrow \mathbf{G}_{a}$ of group schemes over $\mathbf{A}_{\sigma}^{1} / \mathbf{G}_{m}$, given by the square

The map $G_{\sigma} \rightarrow \mathbf{G}_{a}$ is a quasi-ideal, and we will write $\mathbf{G}_{a}^{\text {conj }}$ to denote its cofiber. This is a ring stack, and it encodes the conjugate filtration on de Rham cohomology.

[^1]One can translate the preceding discussion to Witt vector models, too. Namely, define a group scheme M_{σ} over $\mathbf{A}_{\sigma}^{1} / \mathbf{G}_{m}$ defined by the pushout

Note that $M_{\sigma} / \mathcal{V}(\mathcal{O}(1))^{\sharp} \cong F_{*} W$. Then, there is a map $d_{\sigma}: M_{\sigma} \rightarrow W$ of group schemes over $\mathbf{A}_{\sigma}^{1} / \mathbf{G}_{m}$, given by the square

The map $M_{\sigma} \rightarrow W$ is a quasi-ideal, and $F_{*} W / M_{\sigma}$ can be shown to be isomorphic to $\mathbf{G}_{a}^{\text {conj }}$. (This is actually not very difficult: it boils down to relating the above squares to the argument we used at the beginning to prove the isomorphism $\mathbf{G}_{a}^{\mathrm{dR}} \cong F_{*} W / p$.)

Remark 2.1. The diagram (3) can be extended slightly as follows: there is in fact a commutative diagram whose rows are cofiber sequences

Our final stop in characteristic p is to understand how to glue the conjugate and Hodge filtrations together. For this, we need to work over a base which encodes two filtrations on the same k-module: the most natural candidate is

$$
C:=(\operatorname{Spec} k[\sigma, \hbar] / \sigma \hbar) / \mathbf{G}_{m}
$$

where σ has weight -1 and \hbar has weight 1 . This looks like the \mathbf{G}_{m}-quotient of two coordinate axes. The universal line bundle \mathcal{L} over C has two maps $\sigma: \mathcal{O} \rightarrow \mathcal{L}$ and $\hbar: \mathcal{L} \rightarrow \mathcal{O}$; its restriction to $\mathbf{A}_{\sigma}^{1} / \mathbf{G}_{m}$ is $\mathcal{O}(1)$, while its restriction to $\mathbf{A}_{\hbar}^{1} / \mathbf{G}_{m}$ is $\mathcal{O}(-1)$.

We can now define a ring stack \mathbf{G}_{a}^{C} which glues the conjugate and Hodge filtrations: this will have the property that

$$
\left.F_{*} \mathbf{G}_{a}^{C}\right|_{\hbar=0}=\mathbf{G}_{a}^{\mathrm{conj}},\left.\mathbf{G}_{a}^{C}\right|_{\sigma=0}=\mathbf{G}_{a}^{\mathrm{dR},+}
$$

First, note that we can still define M_{σ} over C via the same pushout square (2). To obtain the Hodge filtration in a manner compatible with the conjugate filtration, we therefore want a deformation $d_{\sigma, \hbar}: M_{\sigma} \rightarrow W$ of the map d_{σ} (from (b) above) such that:

- When $\sigma=0$, the $\operatorname{map} d_{\sigma, \hbar}: M_{\sigma} \rightarrow W$ can be identified with the composite

$$
\mathcal{V}(\mathcal{L})^{\sharp} \oplus F_{*} W \xrightarrow{\hbar^{\sharp}+V} W .
$$

- When $\hbar=0$, the map $d_{\sigma, \hbar}: M_{\sigma} \rightarrow W$ can be identified with d_{σ}.

Note that when $\sigma=0$, we can identify M_{σ} with $\mathcal{V}(\mathcal{O}(-1))$; so we only need to modify the square (3) as follows:

This pushout defines the desired map $d_{\sigma, \hbar}: M_{\sigma} \rightarrow W$. Note that the composite

$$
\mathbf{G}_{a}^{\sharp} \xrightarrow{\sigma^{\sharp}} \mathcal{V}(\mathcal{O}(1))^{\sharp} \xrightarrow{\hbar^{\sharp}} \mathbf{G}_{a}^{\sharp}
$$

is zero, since $\hbar \sigma=0$.
Remark 2.2. As with the story from $\mathbf{G}_{a}^{\text {conj }}$, the diagram (5) can be extended slightly as follows: there is in fact a commutative diagram whose rows are cofiber sequences

One can check that the map $d_{\sigma, \hbar}: M_{\sigma} \rightarrow W$ defines a quasi-ideal, so that:
Definition 2.3. Let \mathbf{G}_{a}^{C} denote the ring stack over C defined by $\operatorname{cofib}\left(M_{\sigma} \xrightarrow{d_{\sigma, \hbar}}\right.$ $W)$. Note that

$$
\left.\mathbf{G}_{a}^{C}\right|_{\sigma \neq 0}=W / p,\left.\mathbf{G}_{a}^{C}\right|_{\hbar \neq 0}=F_{*} W / p
$$

We will call the inclusions Spec $k=C_{\sigma \neq 0} \subseteq C$ and $\operatorname{Spec} k=C_{\hbar \neq 0} \subseteq C$ the HodgeTate and de Rham points, respectively.

We can now finally start to study structures on crystalline cohomology, so that all stacks below will live over $W(k)$. The key structure showing up here is the Nygaard filtration. If X is a smooth affine k-scheme, it is characterized by the following property: $\mathcal{N} \geq j \Gamma_{\text {crys }}(X / W(k))$ is the subcomplex of $\Gamma_{\text {crys }}(X / W(k))$ on which the crystalline Frobenius φ is divisible by p^{j}. Using this, one can show that the graded pieces $\mathcal{N}^{j} \Gamma_{\text {crys }}(X / W(k))$ can be identified with $\mathrm{F}_{i}^{\text {conj }} \Gamma_{\mathrm{dR}}(X / k)\{i\}$. Here, $\{i\}$ simply denotes tensoring by the ideal $\left(p^{i}\right) /\left(p^{i+1}\right)$. Another important property of the Nygaard filtration is that if X is F-liftable to a $W(k)$-scheme \widetilde{X}, then $\mathcal{N} \geq j \Gamma_{\text {crys }}(X / W(k))=p^{\max (j-*, 0)} \mathrm{F}_{\mathrm{Hdg}}^{*} \Gamma_{\mathrm{dR}}(\widetilde{X} / W(k))$; in other words, it mixes the Hodge and p-adic filtrations.

We would therefore like to construct a mixed characteristic ring stack $\mathbf{G}_{a}^{\mathcal{N}}$ which encodes the Nygaard filtration on crystalline cohomology. In particular, the underlying stack of $\mathbf{G}_{a}^{\mathcal{N}}$ should be $\mathbf{G}_{a}^{\mathrm{dR}}$ (now over Spf $W(k)!$). Recall that

$$
\pi_{*} \mathrm{TC}^{-}(k) \cong W(k)[\sigma, \hbar] /(\sigma \hbar-p),
$$

and that the resulting \hbar-adic filtration on $\mathrm{TC}^{-}(X)$ encodes the Nygaard filtration on prismatic cohomology. Motivated by this, let us define

$$
\begin{equation*}
k^{\mathcal{N}}:=\operatorname{Spf}(W(k)[\sigma, \hbar] /(\sigma \hbar-p)) / \mathbf{G}_{m} \tag{7}
\end{equation*}
$$

where σ has weight -1 and \hbar has weight 1 . By construction, $k^{\mathcal{N}} \otimes_{W(k)} k \cong C$, and $\mathrm{QCoh}\left(k^{\mathcal{N}}\right)$ is precisely the ∞-category of filtered $W(k)$-modules over $(p)^{\bullet}$. Over $k^{\mathcal{N}}$, the definition of M_{σ}, etc., still go through, and we can define a map $d_{\sigma, \hbar}: M_{\sigma} \rightarrow W$ via the pushout

Note that the composite

$$
\mathbf{G}_{a}^{\sharp} \xrightarrow{\sigma^{\sharp}} \mathcal{V}(\mathcal{O}(1))^{\sharp} \xrightarrow{\hbar^{\sharp}} \mathbf{G}_{a}^{\sharp}
$$

is no longer zero, but is rather p (since $\hbar \sigma=p$).
Remark 2.4. As with the story from $\mathbf{G}_{a}^{\text {conj }}$ and \mathbf{G}_{a}^{C}, the diagram (8) can be extended slightly as follows: there is in fact a commutative diagram whose rows are cofiber sequences

Again, one can check that the map $d_{\sigma, \hbar}: M_{\sigma} \rightarrow W$ defines a quasi-ideal, so that:
Definition 2.5. Let $\mathbf{G}_{a}^{\mathcal{N}}$ denote the filtered prismatization of \mathbf{G}_{a}, defined as the ring stack over $k^{\mathcal{N}}$ given by $\operatorname{cofib}\left(M_{\sigma} \xrightarrow{d_{\sigma, \hbar}} W\right)$. Note that

$$
\begin{equation*}
\left.\mathbf{G}_{a}^{\mathcal{N}}\right|_{\sigma \neq 0}=W / p=\mathbf{G}_{a}^{\triangle},\left.\mathbf{G}_{a}^{\mathcal{N}}\right|_{\hbar \neq 0}=F_{*} W / p=\mathbf{G}_{a}^{\text {crys }},\left.\mathbf{G}_{a}^{\mathcal{N}}\right|_{p=0}=\mathbf{G}_{a}^{C} \tag{10}
\end{equation*}
$$

We will call the inclusions $\operatorname{Spf} W(k)=k_{\sigma \neq 0}^{\mathcal{N}} \subseteq k^{\mathcal{N}}$ and $\operatorname{Spf} W(k)=k_{\hbar \neq 0}^{\mathcal{N}} \subseteq k^{\mathcal{N}}$ the Hodge-Tate and de Rham points, respectively. If X is a k-scheme, we obtain a stack $X^{\mathcal{N}}$ over $k^{\mathcal{N}}$ defined by the functor

$$
\mathrm{CAlg}_{k^{\mathcal{N}}} \xrightarrow{\mathbf{G}_{a}^{\mathcal{N}}} \mathrm{CAlg}_{k} \xrightarrow{X} \mathcal{S} .
$$

Let $\mathcal{H}_{\mathcal{N}}(X) \in \mathrm{QCoh}\left(k^{\mathcal{N}}\right)$ denote the pushforward of the structure sheaf along the morphism $X^{\mathcal{N}} \rightarrow k^{\mathcal{N}}$, and let $\mathcal{N} \geq^{\star} \Gamma_{\Delta}(X / A)$ denote its underlying $W(k)$-module.

Remark 2.6. Let us briefly mention why $\mathbf{G}_{a}^{\mathcal{N}}$ encodes the Nygaard filtration. Firstly, we need to show that the Frobenius on $\Gamma_{\Delta}(X / W(k))$ factors through $\mathcal{N} \geq{ }^{\geq \star} \Gamma_{\Delta}(X / A)$. This is essentially a consequence of the fact that the map $W \xrightarrow{p} W$ fits into a commutative diagram

Taking vertical cofibers, we obtain a factorization

$$
W / p \rightarrow \mathbf{G}_{a}^{\mathcal{N}} \rightarrow F_{*} W / p
$$

of the Frobenius on the ring stack W / p. Secondly, we need to show that $\mathcal{N}^{j} \Gamma_{\text {crys }}(X / W(k))$ can be identified with $\mathrm{F}_{i}^{\mathrm{conj}} \Gamma_{\mathrm{dR}}(X / k)\{i\}$. This has a rather fun argument; see Bha22, Theorem 3.3.5(1)]. It is a topological analogue of the observation that $\mathrm{TC}^{-}(X) / \hbar \simeq \mathrm{THH}(X)$, which encodes the conjugate filtration (this uses that the cyclotomic Frobenius gives an equivalence $\operatorname{THH}(X)[1 / \sigma] \xrightarrow{\varphi} \operatorname{THH}(X)^{t \mathbf{Z} / p} \simeq$ $\operatorname{HP}(X / k)$, and that $\operatorname{THH}(X) / \sigma \cong \mathrm{HH}(X / k))$.

Remark 2.7. The Hodge-Tate and de Rham points of $k^{\mathcal{N}}$ can be understood homotopy-theoretically as follows: the Hodge-Tate point is related to the map $\varphi: \mathrm{TC}^{-}(k)[1 / \sigma] \rightarrow \mathrm{TP}(k) \simeq W(k)^{t S^{1}}$ induced by the cyclotomic Frobenius, while the de Rham point is related to the canonical map can : $\mathrm{TC}^{-}(k) \rightarrow \mathrm{TP}(k)$. The isomorphisms of 10 correspond to the observation that if X is quasisyntomic over k, then $\mathrm{TC}^{-}(X)[1 / \sigma]$ gives a Frobenius untwist of $\mathrm{TP}(X)$; since $\mathrm{TP}(X)$ encodes the crystalline cohomology of $X, \mathrm{TC}^{-}(X)[1 / \sigma]$ encodes a Frobenius untwist of crystalline cohomology. The resulting σ-adic filtration (with respect to the lattice $\left.\mathrm{TC}^{-}(X) \rightarrow \mathrm{TC}^{-}(X)[1 / \sigma]\right)$ encodes the conjugate filtration.

3. Filtered prismatization over \mathbf{Z}_{p}

Let us now turn to mixed characteristic (i.e., deforming from A / d to A, where (A, d) is an oriented prism). Recall from the beginning of the talk that the key idea was deforming the quasi-ideal $W \xrightarrow{p} W$ over A / d to $W \xrightarrow{d} W$ over A. Now, we essentially want to deform the quasi-ideal $M_{\sigma} \xrightarrow{d_{\sigma, \hbar}} W$. Recall that M_{σ} sits in an extension

$$
0 \rightarrow \mathcal{V}(\mathcal{L})^{\sharp} \rightarrow M_{\sigma} \rightarrow F_{*} W \rightarrow 0 .
$$

This motivates:
Definition 3.1. Let R be a p-nilpotent ring. An admissible W-module M is a W-module scheme M which sits in an extension of the form

$$
0 \rightarrow \mathcal{V}(\mathcal{L})^{\sharp} \rightarrow M \rightarrow F_{*} M^{\prime} \rightarrow 0
$$

for some $\mathcal{L} \in \operatorname{Pic}(R)$ and an invertible W-module M^{\prime}.
Remark 3.2. Every invertible W-module is admissible. Moreover, there is a unique extension witnessing the admissibility of a W-module: indeed, extensions form a torsor for $\underline{\operatorname{Hom}}_{W}\left(\mathbf{G}_{a}^{\sharp}, F_{*} W\right)$, but this vanishes ${ }^{3}$

[^2]Construction 3.3. One can prove that there is an equivalence of groupoids $\operatorname{Pic}(W(R)) \simeq$ $\operatorname{Map}\left(\operatorname{Spec}(R), B W^{\times}\right)$. Given $I \in \operatorname{Pic}(W(R))$, we obtain an exact sequence

$$
0 \rightarrow I \otimes_{W(R)} \mathbf{G}_{a}^{\sharp} \rightarrow I \otimes_{W(R)} W \xrightarrow{F} I \otimes_{W(R)} F_{*} W \rightarrow 0 .
$$

If $\mathcal{L} \in \operatorname{Pic}(R)$ and $\sigma: I \otimes_{W(R)} R \rightarrow \mathcal{L}$ is a map of line bundles over R, then define M_{σ} via the pushout

There is then a cofiber sequence

$$
0 \rightarrow \mathcal{V}(\mathcal{L})^{\sharp} \rightarrow M_{\sigma} \xrightarrow{F} I \otimes_{W(R)} F_{*} W \rightarrow 0
$$

and M_{σ} is an admissible W-module over R. In fact, fpqc-locally on R, every admissible W-module arises in this way.

Motivated by this construction, we are led to consider:
Definition 3.4. Let R be a p-nilpotent ring. A filtered Cartier-Witt divisor on R is an admissible W-module M and a map $d: M \rightarrow W$ of admissible W-modules, such that the induced map $F_{*} M^{\prime} \rightarrow F_{*} W$ is obtained as F_{*} of a Cartier-Witt divisor over R. Let $\mathbf{Z}_{p}^{\mathcal{N}}$ denote the functor CAlg $\rightarrow \mathcal{S}$ sending $R \mapsto$ $\{$ filtered Cartier-Witt divisors on $R\}$.

Example 3.5. Let $I \xrightarrow{\alpha} W(R)$ be a Cartier-Witt divisor. Then, we obtain a $\operatorname{map} d_{\alpha}: I \otimes_{W(R)} W \rightarrow W$, which is a filtered Cartier-Witt divisor. Indeed, $M:=I \otimes_{W(R)} W$ is admissible (in fact, invertible!) by Construction 3.3, and the map $M^{\prime} \rightarrow W$ is simply given by the map

$$
M^{\prime}=F^{*} I \otimes_{W(R)} W \xrightarrow{\alpha \otimes \mathrm{id}} W(R) \otimes_{W(R)} W=W
$$

This is indeed a Cartier-Witt divisor. This construction produces a map j_{HT} : $\mathbf{Z}_{p}^{\Delta} \rightarrow \mathbf{Z}_{p}^{\mathcal{N}}$, which exhibits it as an open substack of $\mathbf{Z}_{p}^{\mathcal{N}}$.
Example 3.6. Let $d: M \rightarrow W$ be a filtered Cartier-Witt divisor over R, so that there is a map of admissible sequences

It turns out that that the map d^{\sharp} arises via an actual morphism $\hbar(d): \mathcal{L} \rightarrow \mathbf{G}_{a}$ of line bundles $\left\{^{4}\right.$. so that we obtain a map $\hbar: \mathbf{Z}_{p}^{\mathcal{N}} \rightarrow \mathbf{A}_{\hbar}^{1} / \mathbf{G}_{m}$. The fiber $\left(\mathbf{Z}_{p}^{\mathcal{N}}\right)_{\hbar \neq 0}$ over
$\left.\operatorname{map} \mathbf{G}_{m} \rightarrow W^{\times}\right)$, so such a map is the same as a primitive element of $\mathcal{O}_{\mathbf{G}_{a}^{\sharp}} \cong \mathbf{Z}_{p}\langle t\rangle$ of weight p^{n}. All such elements are zero.
${ }^{4}$ It suffices to observe that

$$
\underline{\operatorname{Hom}}_{W}\left(\mathbf{G}_{a}^{\sharp}, \mathbf{G}_{a}^{\sharp}\right) \cong \underline{\operatorname{Hom}}_{\mathbf{G}_{a}}\left(\mathbf{G}_{a}^{\sharp}, \mathbf{G}_{a}^{\sharp}\right) \cong \underline{\operatorname{Hom}}_{\mathbf{G}_{a}}\left(\mathbf{G}_{a}, \mathbf{G}_{a}\right) \cong \mathbf{G}_{a} .
$$

The first isomorphism comes from the fact that the W-action on \mathbf{G}_{a}^{\sharp} factors through $W \rightarrow \mathbf{G}_{a}$; the second isomorphism comes from Cartier duality over $B \mathbf{G}_{m}$; the third isomorphism is obvious.
$\mathbf{G}_{m} / \mathbf{G}_{m}$ consists of those Cartier-Witt divisors for which d is nonzero, i.e., d^{\sharp} is an isomorphism. In this case, the Cartier-Witt divisor $d: M \rightarrow W$ is encoded entirely by the Cartier-Witt divisor $d^{\prime}: M^{\prime} \rightarrow W$, so that we obtain an isomorphism

$$
j_{\mathrm{dR}}: \mathbf{Z}_{p}^{\triangle} \cong\left(\mathbf{Z}_{p}^{\mathcal{N}}\right)_{\hbar \neq 0} \subseteq \mathbf{Z}_{p}^{\mathcal{N}}
$$

exhibiting $\mathbf{Z}_{p}^{\triangle}$ as an open substack of $\mathbf{Z}_{p}^{\mathcal{N}}$. Note that j_{dR} and j_{HT} are disjoint for any filtered Cartier-Witt divisor in the image of j_{HT}, the map d^{\sharp} is nilpotent!

Remark 3.7. In homotopy theory, the map $\hbar: \mathbf{Z}_{p}^{\mathcal{N}} \rightarrow \mathbf{A}_{\hbar}^{1} / \mathbf{G}_{m}$ encodes the filtration on $\mathrm{TC}^{-}\left(\mathbf{Z}_{p}\right)$ arising via the homotopy fixed points spectral sequence. The points j_{HT} and j_{dR} are supposed to correspond to the maps $\mathrm{TC}^{-} \rightrightarrows \mathrm{TP}$ given by the cyclotomic Frobenius and the canonical map, respectively. Note that σ does not actually exist in $\pi_{2} \mathrm{TC}^{-}\left(\mathbf{Z}_{p}\right)$ - rather, the advantage of the stacky perspective is that we can do everything locally. For instance, there is a cover $\mathrm{TC}^{-}\left(\mathbf{Z}_{p}\right) \rightarrow \mathrm{TC}^{-}\left(\mathbf{Z}_{p} / S \llbracket \widetilde{p} \rrbracket\right)$, where the $\operatorname{map} S \llbracket \widetilde{p} \rrbracket \rightarrow \mathbf{Z}_{p}$ sends $\widetilde{p} \mapsto p$, and the $\mathbf{E}_{\infty^{-}}$ ring $\mathrm{TC}^{-}\left(\mathbf{Z}_{p} / S \llbracket \widetilde{p} \rrbracket\right)$ is ever ${ }^{5}$; its homotopy groups are given by $\mathbf{Z}_{p} \llbracket \widetilde{p} \rrbracket[\sigma, \hbar] /(\sigma \hbar-$ $(\widetilde{p}-p))$. We can therefore construct the localization $\mathrm{TC}^{-}\left(\mathbf{Z}_{p} / S \llbracket \widetilde{p} \rrbracket\right)[1 / \sigma]$; as long as we can extend this localization to the entire cosimplicial diagram induced by the cover $\mathrm{TC}^{-}\left(\mathbf{Z}_{p}\right) \rightarrow \mathrm{TC}^{-}\left(\mathbf{Z}_{p} / S \llbracket \widetilde{p} \rrbracket\right)$, we can localize the stack associated to the even filtration ${ }^{6}$ on $\mathrm{TC}^{-}\left(\mathbf{Z}_{p}\right)$, as well.

It turns out that if $d: M \rightarrow W$ is a filtered Cartier-Witt divisor, then d defines a quasi-ideal; we will not prove this here. This implies that the quotient W / M is in fact a ring stack. In particular:

Definition 3.8. Let $\mathbf{G}_{a}^{\mathcal{N}}$ denote the ring stack over $\mathbf{Z}_{p}^{\mathcal{N}}$ given locally by the assignment

$$
(d: M \rightarrow W) \in \mathbf{Z}_{p}^{\mathcal{N}}(R) \mapsto(W / M)(R) \in \mathrm{CAlg}
$$

This will be called the filtered prismatization of the affine line. Using Recollection 1.1, we can now define the filtered prismatization of any bounded p-adic formal scheme X. Let us assume that $X=\operatorname{Spf}(A)$ is affine, for simplicity. Then, $X^{\mathcal{N}} \rightarrow \mathbf{Z}_{p}^{\mathcal{N}}$ is the stack whose functor of points is given by

CAlg $\ni R \mapsto\{$ filtered CW-divisors $d: M \rightarrow W$, and $A \rightarrow(W / M)(R)\} \in \mathcal{S}$.
We will close with two results.
Proposition 3.9. The filtered prismatization $k^{\mathcal{N}}$ of Definition 3.8 agrees with the stack $\operatorname{Spf}\left(\pi_{*} \mathrm{TC}^{-}(k)\right) / \mathbf{G}_{m}$ of (7).

Proof. Let us write $k^{\mathcal{N}^{\prime}}:=\operatorname{Spf}\left(\pi_{*} \mathrm{TC}^{-}(k)\right) / \mathbf{G}_{m}$, so that if R is a p-nilpotent ring, then $k^{\mathcal{N}^{\prime}}(R)$ is the groupoid of tuples $(\mathcal{L}, \sigma, \hbar)$ of $\mathcal{L} \in \operatorname{Pic}(R), \sigma: \mathcal{O} \rightarrow \mathcal{L}$, and $\hbar: \mathcal{L} \rightarrow \mathcal{O}$ such that $\sigma \hbar=p$. We will build maps $k^{\mathcal{N}^{\prime}} \rightarrow k^{\mathcal{N}}$ and $k^{\mathcal{N}} \rightarrow k^{\mathcal{N}^{\prime}}$ (which will clearly be inverse to each other) as follows:

- To define a map $k^{\mathcal{N}} \rightarrow k^{\mathcal{N}^{\prime}}$, we need to define a map $k^{\mathcal{N}}(R) \rightarrow k^{\mathcal{N}^{\prime}}(R)$ for every p-nilpotent ring R. Suppose we are given a point of $k^{\mathcal{N}}(R)$, i.e., a filtered Cartier-Witt divisor $d: M \rightarrow W$ and $k \rightarrow(W / M)(R)$. Then,

[^3]this lifts uniquely to the dotted arrows in the following diagram, whose columns are cofiber sequences:

This can be understood as a map

$$
(W \xrightarrow{p} W) \rightarrow(M \xrightarrow{d} W)
$$

of filtered CW-divisors over R, and hence a map of admissible sequences

Note that by Footnote 4, the top left vertical map can be identified as $\sigma^{\sharp}: \mathbf{G}_{a}^{\sharp} \rightarrow \mathcal{V}(\mathcal{L})^{\sharp}$ for a unique map $\sigma: \mathcal{O} \rightarrow \mathcal{L}$; similarly, the bottom left vertical map can be identified as $\hbar^{\sharp}: \mathcal{V}(\mathcal{L})^{\sharp} \rightarrow \mathbf{G}_{a}^{\sharp}$ for a unique map $\hbar: \mathcal{L} \rightarrow \mathcal{O}$. The right vertical column can be viewed as a map $(W \xrightarrow{p}$ $W) \rightarrow\left(M^{\prime} \xrightarrow{d^{\prime}} W\right)$ of Cartier-Witt divisors, which by rigidity means that the map $\alpha^{\prime}: W \rightarrow M^{\prime}$ is an isomorphism.

In particular, the line bundle $\mathcal{L} \in \operatorname{Pic}(R)$ associated to M is equipped with maps $\sigma: \mathcal{O} \rightarrow \mathcal{L}$ and $\hbar: \mathcal{L} \rightarrow \mathcal{O}$ such that $\sigma \hbar=p$; this defines an R-point of $k^{\mathcal{N}^{\prime}}$, as desired.

- Suppose we are given an R-point $(\mathcal{L}, \sigma, \hbar)$ of $k^{\mathfrak{N}^{\prime}}$. Define M_{σ} and the map $M_{\sigma} \xrightarrow{d_{\sigma, \hbar}} W$ via the square 6. Then, we obtain a map

$$
(W \xrightarrow{p} W) \xrightarrow{\alpha}\left(M_{\sigma} \xrightarrow{d_{\sigma, \hbar}} W\right) .
$$

of filtered Cartier-Witt divisors over R. In particular, this is a map of quasi-ideals over R, so that we obtain a map

$$
k=W(k) / p \rightarrow W(R) / p \xrightarrow{\alpha}\left(W / M_{\sigma}\right)(R) .
$$

The data of $d_{\sigma, \hbar}$ along with this map $k \rightarrow\left(W / M_{\sigma}\right)(R)$ is precisely an R-point of $k^{\mathcal{N}}$, so that we obtain the desired map $k^{\mathcal{N}^{\prime}} \rightarrow k^{\mathcal{N}}$.

The same argument shows that if R is a perfectoid ring, the filtered prismatization $R^{\mathcal{N}}$ of Definition 3.8 agrees with the stack $\operatorname{Spf}\left(\pi_{*} \mathrm{TC}^{-}(R)\right) / \mathbf{G}_{m}$.
Proposition 3.10. There is an isomorphism $\left(\mathbf{Z}_{p}^{\mathcal{N}}\right)_{\hbar=0} \cong \mathbf{G}_{a}^{\mathrm{dR}} / \mathbf{G}_{m}$.

Proof. Suppose that $d: M \rightarrow W$ is a filtered Cartier-Witt divisor over a p nilpotent ring R such that $\hbar(d)=0\left(\right.$ so $\left.d^{\sharp}=0\right)$. Recall the map of exact sequences (11):

Since the left vertical map is zero, there is a dotted map $\widetilde{d}: F_{*} M^{\prime} \rightarrow W$ as indicated. We claim:
(*) \tilde{d} has to factor as

$$
\tilde{d}: F_{*} M^{\prime} \xrightarrow{F_{*} \xi} F_{*} W \xrightarrow{V} W
$$

for some $\xi: M^{\prime} \rightarrow W$.
We will prove $(*)$ below. First, note that it implies that ξ can be viewed as a map

$$
\xi:\left(M^{\prime} \rightarrow W\right) \rightarrow(W \xrightarrow{F V=p} W)
$$

of Cartier-Witt divisors; in particular, $\xi: M^{\prime} \rightarrow W$ must be an isomorphism by rigidity. Therefore, M is necessarily an extension of $F_{*} W$ by $\mathcal{V}(\mathcal{L})^{\sharp}$. We claim that
$(* *)$ There is an isomorphism $\operatorname{Ext}_{W}^{1}\left(F_{*} W, \mathbf{G}_{a}^{\sharp}\right) \cong \mathbf{G}_{a} / \mathbf{G}_{a}^{\sharp} \cong \mathbf{G}_{a}^{\mathrm{dR}}$, which is \mathbf{G}_{m}-equivariant for the standard action on the target $\mathbf{G}_{a}^{\mathrm{dR}}$, and the action on \mathbf{G}_{a}^{\sharp} on the source.
This immediately implies the desired claim, so let us now prove $(*)$ and $(* *)$.
Proof of $(*)$. It suffices to show that the map $V: F_{*} W \rightarrow W$ gives an isomorphism

$$
\underline{\operatorname{Hom}}_{W}\left(F_{*} W, F_{*} W\right) \rightarrow \underline{\operatorname{Hom}}_{W}\left(F_{*} W, W\right) .
$$

To prove this, first note that the source is

$$
\underline{\operatorname{Hom}}_{W}\left(F_{*} W, F_{*} W\right) \cong \underline{\operatorname{Hom}}_{F_{*} W}\left(F_{*} W, F_{*} W\right) \cong F_{*} W,
$$

where the first isomorphism is because $F_{*} W$ is a quotient of W. From right to left, this isomorphism sends $x \in F_{*} W$ to $F_{*} W \xrightarrow{x} F_{*} W$. Therefore, we need to show that the map

$$
F_{*} W \rightarrow \underline{\operatorname{Hom}}_{W}\left(F_{*} W, W\right)
$$

sending $x \in F_{*} W$ to $F_{*} W \xrightarrow{x} F_{*} W \xrightarrow{V} W$ is an isomorphism. Applying $\underline{\operatorname{Hom}}_{W}(-, W)$ to the exact sequence

$$
0 \rightarrow \mathbf{G}_{a}^{\sharp} \rightarrow W \xrightarrow{F} F_{*} W \rightarrow 0,
$$

we obtain

$$
0 \rightarrow \underline{\operatorname{Hom}}_{W}\left(F_{*} W, W\right) \rightarrow \underline{\operatorname{Hom}}_{W}(W, W) \rightarrow \underline{\operatorname{Hom}}_{W}\left(\mathbf{G}_{a}^{\sharp}, W\right)
$$

The middle term is evidently W, so it suffices to show that the kernel of the map $W \rightarrow \underline{\operatorname{Hom}}_{W}\left(\mathbf{G}_{a}^{\sharp}, W\right)$ is isomorphic to $F_{*} W$.

Observe that the map $W \rightarrow \underline{\operatorname{Hom}}_{W}\left(\mathbf{G}_{a}^{\sharp}, W\right)$ factors as

$$
\begin{equation*}
W \rightarrow \underline{\operatorname{Hom}}_{W}\left(\mathbf{G}_{a}^{\sharp}, \mathbf{G}_{a}^{\sharp}\right) \rightarrow \underline{\operatorname{Hom}}_{W}\left(\mathbf{G}_{a}^{\sharp}, W\right) \tag{13}
\end{equation*}
$$

Indeed, if $x \in W$, the map $\mathbf{G}_{a}^{\sharp} \rightarrow W$ sending $y \mapsto x y$ lands in $W[F]$ (since $F(x y)=$ $F(x) F(y)=0)$. Therefore, 13 gives a commutative diagram

The map $\mathbf{G}_{a} \rightarrow \underline{\operatorname{Hom}}_{W}\left(\mathbf{G}_{a}^{\sharp}, W\right)$ is injective, and the map $W \rightarrow \mathbf{G}_{a}$ is surjective. In particular, the kernel of the map $W \rightarrow \underline{\operatorname{Hom}}_{W}\left(\mathbf{G}_{a}^{\sharp}, W\right)$ can be identified with the kernel of $W \rightarrow \mathbf{G}_{a}$, which is precisely $F_{*} W$, as desired.

Proof of $(* *)$. The cofiber sequence

$$
\mathbf{G}_{a}^{\sharp} \rightarrow W \xrightarrow{F} F_{*} W
$$

induces a cofiber sequence

$$
\underline{\operatorname{Hom}}_{W}\left(W, \mathbf{G}_{a}^{\sharp}\right) \rightarrow \underline{\operatorname{Hom}}_{W}\left(\mathbf{G}_{a}^{\sharp}, \mathbf{G}_{a}^{\sharp}\right) \rightarrow \underline{\operatorname{Ext}}_{W}^{1}\left(F_{*} W, \mathbf{G}_{a}^{\sharp}\right)
$$

The first term is simply \mathbf{G}_{a}^{\sharp}, and the second term can be identified with \mathbf{G}_{a} by Footnote 4 . It follows that there is a cofiber sequence

$$
\mathbf{G}_{a}^{\sharp} \rightarrow \mathbf{G}_{a} \rightarrow \underline{\operatorname{Ext}}_{W}^{1}\left(F_{*} W, \mathbf{G}_{a}^{\sharp}\right),
$$

giving the desired identification.

The isomorphism of Proposition 3.10 is very useful: suppose one has a map $X \rightarrow \mathbf{Z}_{p}^{\mathcal{N}}$ of stacks over $\mathbf{A}_{\hbar}^{1} / \mathbf{G}_{m}$ which one wants to prove is an isomorphism. Let $\mathcal{J} \rightarrow \mathcal{O}_{X}$ denote the ideal given by the zero locus of \hbar, and suppose that \mathcal{O}_{X} is \mathcal{J}-complete. If the induced map $X_{\hbar=0} \rightarrow\left(\mathbf{Z}_{p}^{\mathcal{N}}\right)_{\hbar=0}$ is an isomorphism, then completeness implies that the original map $X \rightarrow \mathbf{Z}_{p}^{\mathcal{N}}$ is itself an isomorphism. It often turns out to be much easier to study $X_{\hbar=0}$. For instance, one can argue in this manner to show that the stack associated to the even filtration (HRW22) on $\mathrm{TC}^{-}\left(\mathbf{Z}_{p}\right)$ is isomorphic to $\mathbf{Z}_{p}^{\mathcal{N}}$, and even relate $\mathbf{Z}_{p}^{\mathcal{N}}$ to the complex connective image-of- J spectrum.

References

[Bha22] B. Bhatt. Prismatic F-gauges. Lecture notes available at https://www.math.ias.edu/ ~bhatt/teaching/mat549f22/lectures.pdf 2022.
[BL22a] B. Bhatt and J. Lurie. Absolute prismatic cohomology. https://arxiv.org/abs/2201. 06120, 2022.
[BL22b] B. Bhatt and J. Lurie. The prismatization of p-adic formal schemes. https://arxiv.org/ abs/2201.06124, 2022.
[Dri22] V. Drinfeld. Prismatization. https://arxiv.org/abs/2005.04746 2022.
[HRW22] J. Hahn, A. Raksit, and D. Wilson. A motivic filtration on the topological cyclic homology of commutative ring spectra. https://arxiv.org/abs/2206.11208 2022.

1 Oxford St, Cambridge, MA 02139
Email address: sdevalapurkar@math.harvard.edu, February 23, 2023

[^0]: Part of this work was done when the author was supported by the PD Soros Fellowship and NSF DGE-2140743.

[^1]: ${ }^{1}$ Everywhere a subscript \hbar shows up below, one can replace it by t to obtain the notation used in Bha22.
 ${ }^{2}$ Everywhere a subscript σ shows up below, one can replace it by u to obtain the notation used in Bha22.

[^2]: ${ }^{3}$ Since $F_{*} W$ has a filtration whose graded pieces are $F_{*}^{n} \mathbf{G}_{a}$, it suffices to show that $\underline{\operatorname{Hom}}_{W}\left(\mathbf{G}_{a}^{\sharp}, F_{*}^{n} \mathbf{G}_{a}\right)=0$ for $n>0$. Such a map is \mathbf{G}_{m}-equivariant (because of the Teichmuller

[^3]: ${ }^{5}$ In fact, it is equivalent (at least) as an \mathbf{E}_{1}-ring to $\left(\tau_{\geq 0} \ell^{t \mathbf{Z} / p}\right){ }^{h S^{1}}$. Using this cover of $\mathrm{TC}^{-}\left(\mathbf{Z}_{p}\right)$, one can even show that $\mathrm{TC}^{-}\left(\mathbf{Z}_{p}\right)$ is closely related to the complex image of J spectrum $\left.j_{\mathbf{C}}=\operatorname{fib}_{6_{\text {See }}} \xrightarrow{\psi-1} \Sigma^{2 p-2} \ell\right)$.
 ${ }^{6}$ See HRW22.

