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1. The main results

In this talk, we will describe the étale comparison theorem in prismatic coho-
mology; since this is perhaps the most algebro-geometric of the planned talks, I will
try to describe connections to homotopy theory wherever appropriate. The moral
of this talk is that absolutely integrally closed valuation rings of rank ≤ 1 are very
well behaved, and often many calculations reduce to the study of these rings.

The main result is:

Theorem 1.1 ([BS19, Theorem 9.1]). Let (A, I) be a perfect prism, and let X be
a smooth p-adic formal scheme over A = A/I. If Xη denotes the generic fiber over
Qp viewed as an adic space, there is an isomorphism

Γet(Xη;Z/p
n) ∼=

(
Γ∆(X/A)/pn[ 1I ]

)ϕ=1
.

In particular, if X = Spf(S) is affine and (A, (d)) is a perfect prism, then

Γet(Spec(R[ 1p ]);Z/p
n) ∼=

(
∆S/A[

1
d ]/p

n
)ϕ=1

.

We will only focus on the proof of Theorem 1.1 in the case when X = Spf(S)
is affine. Recall that taking ϕ-fixed points only produces the untwisted syntomic
cohomology Zp(0): if R is a perfectoid ring, then Zp(0)

syn(R) = Ainf(R)ϕ=1. One
can therefore ask for a variant of the étale comparison which compares the p-adic
Tate twists Zp(n)

syn of syntomic cohomology with the usual étale sheaves Zp(n)
et.

Recollection 1.2. If R is a quasisyntomic ring, then the syntomic complexes
Zp(n)

syn(R) are defined as

Zp(n)
syn(R) = fib(N≥n∆̂R{n}

ϕ−can−−−−→ ∆̂R{n}).
If R is perfectoid and d ∈ Ainf(R) is a generator of the kernel of Fontaine’s map
θ : Ainf(R) → R, then this is simply

Zp(n)
syn(R) = fib(ϕ−1(dn)Ainf(R)

ϕ
dn −1
−−−−→ Ainf(R)).

A definition which is more in line with this seminar might be that Zp(n)
syn(R) is

the global sections of the structure sheaf of the syntomic stack Spf(R)syn, which we
haven’t yet gotten to (and probably won’t...).

Part of this work was done when the author was supported by the PD Soros Fellowship and
the NSF GRFP.

1



2 S. K. DEVALAPURKAR

Theorem 1.3 ([BL22, Theorem 8.5.1]). Let R be an animated Zp[ζp∞ ]-algebra.
The sequence (1, ζp, ζp2 , · · · ) defines an element ϵ ∈ π0Zp(1)

syn(Zp[ζp∞ ]). Then,
there is a comparison map(⊕

n∈Z

Zp(n)
syn(R)

)
[ 1ϵ ] →

⊕
n∈Z

Zp(n)
et(R[ 1p ]),

which is an isomorphism after p-completion.

In this form, the étale comparison theorem looks like it might have a homotopy-
theoretic analogue.

Recollection 1.4. One of the main results of [BMS19] is that there is a fil-
tration on TC(R) such that grnmot TC(R) = Zp(n)

syn(R)[2n]. An older result,
due to Thomason [Tho85], says that there is a filtration on K(1)-local K-theory
LK(1)K(R[ 1p ]) such that grnmot LK(1)K(R[ 1p ]) = Zp(n)

et(R[ 1p ])[2n]. This is often
stated as the fact that if p is invertible on a (nice enough) X, there is a Thomason
spectral sequence

Ei,j
1 = Hi

et(X;Zp(j)) ⇒ π2j−iLK(1)K(X).

A natural topological analogue of the comparison between étale and syntomic coho-
mology would be a comparison between the K(1)-localizations of TC and K-theory.

Theorem 1.5 ([BCM20, Theorem 2.17]). If R is a commutative ring, there is a
natural equivalence LK(1)TC(R) ≃ LK(1)K(R∧

p [
1
p ]).

Example 1.6. A rather silly example of this result is the case when R is an Fp-
algebra. Then, TC(R) is a module over TC(Fp) ∼= C∗(S1;Zp); since LK(1)TC(Fp) =

0, we see that LK(1)TC(R) = 0. Similarly, R∧
p [

1
p ] = 0, so Theorem 1.5 just asserts

that 0 = 0.

It would be interesting to know whether there is a motivically filtered analogue
of Theorem 1.5, so that one recovers Theorem 1.1 on associated graded. We will
not discuss Theorem 1.5 in this talk.

Remark 1.7. In the statement of Theorem 1.5, we did not make any assumption
that R be an animated Zp[ζp∞ ]-algebra, but such an assumption was present in
Theorem 1.3. This assumption simply guarantees the existence of the element ϵ.
To explain this, let us take R to be Zcycl

p := Zp[ζp∞ ]∧p , so that R is in fact a
p-complete perfectoid ring. Then

π∗TP(Z
cycl
p ) ∼= Ainf(Z

cycl
p )[ℏ±1] ∼= Zp[q

±1/p∞
]∧(p,[p]q)[ℏ

±1],

where |ℏ| = −2. This can be used to show that there is a class in π2TC(Z
cycl
p ),

which represents ϵ ∈ Zp(1)
syn(Zcycl

p ).

Let us now turn to actually proving these results. As we already saw in Re-
mark 1.7 with Zcycl

p , things tend to simplify a lot for perfectoid rings. Consequently,
one possible strategy towards proving these results might be to somehow reduce to
the perfectoid case. This is indeed possible, through the use of the “arc-topology”.
We will therefore break this talk up into the following parts:

(a) Theorem 1.3, assuming Theorem 1.1.
(b) Defining the arc-topology.
(c) Theorem 1.1 in the case n = 0, and the reduction to perfectoid rings.
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2. Weight ≥ 1 comparison

Throughout this section, we will assume Theorem 1.1. Let R be an animated
Zp[ζp∞ ]-algebra. To prove Theorem 1.3, we need to understand Zp(n)

syn(R)[ 1ϵ ] and
Zp(n)

et(R[ 1p ]). Let us begin with étale cohomology.

Lemma 2.1. Let R be an animated Zp[ζp∞ ]-algebra. There is an isomorphism of
graded Zp-algebras ⊕

n∈Z

Zp(n)
et(R[ 1p ])

∼−→ Zp(0)
et(R[ 1p ])[ϵ

±1],

where ϵ lives in weight 1.

Proof. We begin by analyzing the case R = Zp[ζp∞ ] (so R[ 1p ]
∼= Qp(ζp∞)).

Then, Zp(1)
et(Qp(ζp∞)) is tautologically isomorphic to the Tate module Tp(Qp(ζp∞)×).

This has a canonical class ϵ defined by the system (1, ζp, ζp2 , · · · ), and it furnishes
a canonical isomorphism Zet

p → Zp(1)
et of étale sheaves on Qp(ζp∞)-schemes. This

immediately implies the desired result. □

This reduces calculations on the étale side to weight zero, where can now use
Theorem 1.1 to obtain an isomorphism

(1)
⊕
n∈Z

Zp(n)
et(R[ 1p ])

∼−→ Zp(0)
et(R[ 1p ])[ϵ

±1]
∼−→ (∆R/A[

1
d ]

∧
p )

ϕ=1[ϵ±1].

Here, we work with the prism A = Ainf(Z
cycl
p ) = Zp[q

±1/p∞
]∧(p,[p]q), and d = [p]q.

There is a class in Zp(1)
syn(Zcycl

p ), which will also be denoted ϵ, which may be
understood from a topological perspective as follows.

Construction 2.2. The desired class ϵ ∈ Zp(1)
syn(Zcycl

p ) can be viewed as a class
in π2TC(Z

cycl
p ). There is a canonical map B(Zcycl

p )×+ → K(Zcycl
p ), which upon

composition with the cyclotomic trace gives an E∞-map

(Bµp∞)+ ≃ B(Zcycl
p )×+ → TC(Zcycl

p ).

Taking p-completions, we obtain an E∞-map (CP∞
+ )∧p → TC(Zcycl

p ). As men-
tioned, we will view ϵ as a class in Zp(1)

syn(Zcycl
p ), and hence as a map ϵ :

Zp(0)
syn → Zp(1)

syn. We therefore obtain an endomorphism ϵ of
⊕

n∈Z Zp(n)
syn(R).

To prove Theorem 1.3, it suffices to show that the right-hand side of (1) can
be identified with

(⊕
n∈Z Zp(n)

syn(R)
)
[ 1ϵ ]. As in Lemma 2.1, the key case to

understand is R = Zcycl
p . In this case, Zp(0)

et(Qp(ζp∞)) ∼= Zp, so we need to show
that there is a p-complete isomorphism

(2)

(⊕
n∈Z

Zp(n)
syn(Zcycl

p )

)
[ 1ϵ ] ≃ Zp[ϵ

±1].

We will only prove (2), and instead refer to [BL22, Proof of Theorem 8.5.1] for the
argument that for a general Zcycl

p -algebra R, there is a p-complete equivalence

(∆R/Zp[q±1/p∞ ]∧
(p,[p]q)

[1/[p]q]
∧
p )

ϕ=1[ϵ±1]
∼−→

(⊕
n∈Z

Zp(n)
syn(R)

)
[ 1ϵ ].

One can prove the equivalence (2) algebraically, but a topological perspective
goes as follows. The E∞-map (CP∞

+ )∧p → TC(Zcycl
p ) → LK(1)TC(Z

cycl
p ) sends



4 S. K. DEVALAPURKAR

the Bott class in π2CP∞ to an invertible class in π2LK(1)TC(Z
cycl
p ) by [BCM20,

Proposition 3.5]. Therefore, we obtain an E∞-map

(CP∞
+ )∧p [

1
β ] ≃ KU∧

p → LK(1)TC(Z
cycl
p ).

The equivalence (2) can be viewed as an algebraic manifestation of the following:

Proposition 2.3 ([BCM20, Theorem 1.4]). The map LK(1)(TC(Zp) ⊗ KU∧
p ) →

LK(1)TC(Z
cycl
p ) is an equivalence of E∞-rings.

In the remainder of this talk, we will prove Theorem 1.1.

3. The arc-topology

The arc-topology was introduced by Bhatt and Mathew in [BM21]; in this talk,
we will only use a slight variant, known as the arcp-topology. I found [Ked22] to
be a helpful resource.

Definition 3.1. A map f : X → Y of qcqs schemes is an arc-cover if for every
valuation ring V of rank ≤ 1 equipped with a map Spec(V ) → X, there is an
extension1 V → W of valuation rings of rank ≤ 1, and a map Spec(W ) → Y , which
fits into the diagram

Spec(W ) //

��

Y

f

��
Spec(V ) // X.

This defines a Grothendieck topology in the usual way: one takes the coverings
{Yi → X}i∈I to be those such that for any affine open U ↪→ X, there is a finite
set J , a map e : J → I, and affine opens Uj ⊆ f−1

e(j)(U) for each j ∈ J , such that∐
j Uj → U is an arc-cover. This topology is known as the arc-topology.

The arcp-topology is essentially the same thing; one now assumes that the
schemes involved are derived p-complete, and the test valuation rings are p-complete,
have p ̸= 0, and are still of rank ≤ 1. Since we will always be p-complete, we will
not bother distinguishing between the arc- and arcp-topologies.

Remark 3.2. In practice, knowing that something is an arc-sheaf isn’t enough
to show that it is an arcp-sheaf. To make the translation, one needs to use the
observation that if A → B is an arcp-cover, then A → B×A/p is an arc-cover. For
example, if F is an arc-sheaf on p-complete R-algebras, then F will be an arcp-sheaf
if the following condition is satisfied: the map F (A×B) → F (A) is an isomorphism
for every p-complete ring of the form A × B with pB = 0. We will not check this
in any of our discussion below.

Remark 3.3. There is a variant of the arc-topology which is known as the v-
topology : here, a map f : X → Y of qcqs schemes is a v-cover if for every valuation
ring V equipped with a map Spec(V ) → X, there is an extension V → W of

1I.e., an injective local map.
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valuation rings, and a map Spec(W ) → Y , which fits into the diagram

Spec(W ) //

��

Y

f

��
Spec(V ) // X.

In other words, V and W are no longer required to be of rank ≤ 1. The main
difference between the v- and arc-topologies is the assumption on the rank of the
test valuation rings. Moreover, all v-covers are arc-covers, and these are the same
in the Noetherian situation.

The v-topology agrees with the h-topology (which is generated by étale covers
and proper surjections) in the case of finite-type maps between Noetherian schemes.
In general, though, v-covers are inverse limits of h-covers.

Remark 3.4 (Criterion for arc-descent). Given a valuation ring V and a prime ideal
p ⊆ V , we can “break up” V into V/p and Vp. This leads to the following criterion
for being an arc-sheaf ([BM21, Theorem 4.1]): a functor F : Schopqcqs → ModZ,≤0

which is finitary is an arc-sheaf if and only if it is a v-sheaf, and for every valuation
ring V with algebraically closed fraction field, and every prime ideal p ⊆ V , the
following square is Cartesian:

F(V ) //

��

F(V/p)

��
F(Vp) // F(κ(p)).

This can be thought of as an excision property. This gives a convenient approach to
checking that a functor F something is an arc-sheaf: one first checks that F satisfies
h-descent; using finitary properties, one could then check that F satisfies v-descent;
if F satisfies excision, then it satisfies arc-descent.

One of the main utilities of the arc-topology is that it has a very nice basis,
given by perfectoid rings.

Recollection 3.5. A ring R is said to be perfectoid if R is p-complete, R/p is
semiperfect, the kernel of Fontaine’s map θ : W (R♭) → R is principal, and there is
some π ∈ R such that πp is a unit multiple of p. (If R is p-torsionfree, then the
condition on ker(θ) can be replaced by the following: if x ∈ R[1/p] and xp ∈ R,
then x ∈ R.)

Lemma 3.6. Any p-adic formal scheme X admits an arc-cover by Spf(S) for some
perfectoid ring S.

Proof. We can assume that X = Spf(R). Let I be a set of representatives
of rank 1 valuations on R; then, there is a map R →

∏
v∈I Rv, where Rv is the

valuation ring associated to v ∈ I. Let R+
v denote the absolute integral closure of

Rv, and let (R+
v )

∧
p denote its p-completion. We claim that R+

v is perfectoid; the
resulting map R →

∏
v∈I(R

+
v )

∧
p is our desired arc-cover.

Let us now show that the p-completion of an absolutely integrally closed domain
V is perfectoid. First, if V is an Fp-algebra, then the assumptions on V imply that
it must be perfect: indeed, V is reduced, and the Frobenius is surjective (since for
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any v ∈ V , the monic polynomial xp − v ∈ V [x] has a root), which implies the
claim. Now, suppose that V is of mixed characteristic. Because V is not a DVR,
we can choose some x ∈ V such that xp|p. Since the Frobenius on V/p is surjective,
there is an element y ∈ V whose image under the Frobenius map V/p → V/p is p

xp .
In other words, yp = p

xp (mod p), i.e., (xy)p

p ≡ 1 (mod p). It follows that if π = xy,
then πp is a unit multiple of p. This gives the desired claim. □

This formally implies the following useful result (when using this below, we’ll
ignore the hypercompleteness issue):

Proposition 3.7 (Unfolding). There is an equivalence between the ∞-category of
arc-hypersheaves of spectra on derived p-complete rings and the ∞-category of arc-
hypersheaves of spectra on perfectoid rings.

4. Weight zero comparison

Let us now show Theorem 1.1. Define the following two functors F and G on
affine formal schemes:

F : R 7→ Γet(R[ 1p ];Z/p
n),

G : R 7→ (∆R/A[
1
d ]/p

n)ϕ=1.

Lemma 4.1. The functor F is an arc-sheaf.

Proof. In fact, we will show more generally that if R is a commutative ring
and F is a torsion étale sheaf on Spec(R), then the functor sending an R-scheme
c : X → Spec(R) to Γet(X; c∗F) is an arc-sheaf. This is [BM21, Theorem 5.4], and
the argument below is taken from loc. cit.

By the discussion in Remark 3.4, it suffices to show that the assignment X 7→
Γet(X; c∗F) is a v-sheaf, and that it satisfies excision. Using [Ryd10, Theorem
3.12], we can reduce to checking that Γet(−;F) satisfies descent for a proper sur-
jection f : X → Y of finite type. Since the étale topology has enough points (given
by strictly Henselian local rings). We can therefore assume that Y is of the form
Spec(R) where R is a strictly Henselian local ring. Let y be the closed point of R, let
κ(y) be its residue field, and let Xy denote the fiber product X×Y {y}. Then proper
base-change guarantees that Γet(X;F) ≃ Γet(Xy;F). Therefore, it suffices to show
that Γet(−;F) satisfies descent for the map Xy → {y}. However, the map Xy → {y}
admits a section after base-changing along Spec(κ(y)) → Spec(κ(y)) = {y}. The
topological invariance of étale cohomology lets us conclude that this base-change
does not affect the value of Γet(−;F). We therefore obtain a splitting of the cosim-
plicial diagram Γet(X

×•
y ;F), which implies that Γet(−;F) satisfies descent for the

map Xy → {y}.
It remains to show that the assignment X 7→ Γet(X;F) satisfies excision. This

again follows from the fact that the étale topology has enough points given by
strictly Henselian local rings. First, observe that an absolutely integrally closed
valuation ring V is strictly Henselian: it is Henselian and has algebraically closed
residue field because any polynomial in V [x] splits into a product of linear factors
thanks to the absolute integral closedness of V . Some thought shows that V/p and
Vp are therefore also both strictly Henselian. Since V and V/p are both strictly
Henselian, and both have the same residue field, we conclude that Γet(V ;F)

∼−→
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Γet(V/p;F). Similarly, Γet(Vp;F)
∼−→ Γet(κ(p);F). The desired excision square is

therefore obviously Cartesian. □

Lemma 4.2. The functor G is an arcp-sheaf.

Proof. Let us now show that G is an arcp-sheaf. (We remind the reader
that we will ignore the important difference between arcp- and arc-sheaves.) Recall
that ∆R/A,perf denoted the (p, I)-completion of the filtered colimit of ∆R/A along its
Frobenius. The canonical map ∆R/A/p → ∆R/A,perf/p induces an equivalence after
inverting d and extracting ϕ-fixed points. Therefore,

G(R)
∼−→ (∆R/A,perf [

1
d ]/p

n)ϕ=1,

and it suffices to show that R 7→ (∆R/A,perf [
1
d ]/p

n)ϕ=1 is an arc-sheaf. In fact,
R 7→ ∆R/A,perf is itself an arc-sheaf.

Given a p-complete ring R as above, one can define its perfectoidization Rperf :=
∆R/A,perf ⊗A A/I. (Despite its definition, this is independent of the choice of prism
(A, I).) It suffices to show that the assignment R 7→ Rperf is an arc-sheaf. Some-
thing significantly stronger turns out to be true: in fact, Rperf ≃ Γarc(R;O)! In
some sense, this is the key ingredient in all arguments of this sort (note that we
only need to know that Operf is an arc-sheaf, not the much stronger claim that
arc-sheafification of O is Operf). Instead of proving this important claim in the
generality of p-complete rings, let us only explain a weaker (but closely related!)
statement for Fp-algebras.

If R is an Fp-algebra, then Rperf is the usual perfection of R. Indeed, take
(A, I) = (Zp, (p)), so that ∆R/A = ∆R/A/p inherits a Frobenius map ϕ. Since
∆R/A has a filtration whose graded pieces are gri ∆R/A = Ωi

R/Fp
, the direct limit

Rperf = ∆R/A,perf also has a filtration whose graded pieces are given by the direct
limit of Ωi

R/Fp
along the Frobenius. However, since Frobenius kills differential

forms, this direct limit vanishes unless i = 0 (in which case it is precisely Rperf).
We now claim that Rperf ≃ Γh(R;O), i.e., that the h-sheafification of the struc-

ture sheaf O is the perfection Operf . This apparently goes back to Gabber (of
course), and is the sort of result that the general isomorphism Rperf ≃ Γarc(R;O)
is modeled after.

Recall that a ring A is said to be absolutely weakly normal if the following two
conditions are satisfied2:

(a) for all x, y ∈ A such that x3 = y2 ∈ A, there is a unique a ∈ A such that
x = a2 and y = a3. In other words, there is a unique dotted arrow in the
following diagram

A1 = SpecZ[t]

��
Spec(A) //

66

cusp = SpecZ[t2, t3].

(Why are the exponents 2 and 3 special? We’ll see below that for our
purposes, this is just because they’re the smallest pair of coprime integers.)

2If only the first condition is satisfied, then A is called seminormal.
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(b) for all primes p and all x, y ∈ A such that ppx = yp ∈ A, there is a unique
a ∈ A such that x = ap and y = pa. In other words, there is a unique
dotted arrow in the following diagram

(A1)(−1) = SpecZ[t1/p]

��
Spec(A) //

66

SpecZ[t, pt1/p].

Remark 4.3. One could ask for the a priori stronger requirement that
for any n ≥ 1, there is a unique dotted arrow in the following diagram

(A1)(−n) = SpecZ[t1/p
n

]

��
Spec(A) //

55

SpecZ[t, pt1/p, · · · , pnt1/pn

].

However, this is equivalent to the condition for n = 1. One direction
is easy, so suppose that the lifting condition is satisfied for n = 1, and
consider a diagram as above. Let xj denote the image of pjt1/p

j

in A, so
that xp

j = pj(p−1)+1xj−1. Suppose by induction that for j ≤ n−1, there is
a unique a ∈ A such that xj = pjap

n−1−j

(so a represents t1/p
n−1

). Then,

xp
n = pn(p−1)+1xn−1 = pnpa = pp(pp(n−1)a).

Therefore, the lifting condition for n = 1 implies that there is a unique
b0 ∈ A such that xn = pb0 and pp(pp(n−2)a) = pp(n−1)a = bp0. The latter
condition implies that there is a unique b1 ∈ A such that b0 = pb1 and
pp(n−2)a = bp1. Inductively, we conclude that there is some bn−1 such that
b0 = pp(n−1)bn−1, and a = bpn−1. This implies the desired lifting.

If A is a ring, let Aawn denote its absolutely weak normal closure. It turns out
([Staty, Tag 0EUR]) that the canonical map A → Aawn exhibits Spec(Aawn) as
the initial object in the category of universal homeomorphisms Spec(B) → Spec(A).
The relevance of this notion in our context is that [Staty, Tag 0EVU] implies that
the assignment R 7→ Rawn is the sheafification of the structure sheaf in the h-
topology (for arbitary R, not just Fp-algebras).

It therefore suffices to show that if R is an Fp-algebra, then Rperf ≃ Rawn. This
is [Staty, Tag 0EVW], which we review here since the argument is fun. The map
R → Rperf induces a universal homeomorphism, so the universal property of Rawn

gives a map Rperf → Rawn. It suffices to show that Rperf is itself absolutely weakly
normal; more generally, any perfect Fp-algebra A is absolutely weakly normal. Let
us check both of the conditions above:

(a) Suppose x, y ∈ A such that x3 = y2. First suppose p = 2. Then x = a2

for some a ∈ A, and therefore we can take y = a3. Similarly, if p = 3, then
y = a3 for some a ∈ A, and therefore we can take x = a2. Now assume
that p > 3, so that p = 2i+ 3j for some i, j > 0. Let a ∈ A be such that
x = ap, and let b ∈ A be such that y = bp. Then

(aibj)2p = a2ipb2jp = x2iy2j = x2ix3j = xp.
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Therefore, x = (aibj)2. Similarly,

(aibj)3p = a3ipb3jp = x3iy3j = y2iy3j = yp,

so that y = (aibj)3.
(b) Let ℓ be a prime, and suppose that x, y ∈ A is a pair such that ℓℓx = yℓ ∈

A. If ℓ = p, then yp = 0, so y = 0; and x = ap for some a ∈ A. If ℓ ̸= p,
then take a = y/ℓ: clearly x = aℓ, while y = ℓa.

□

Construction 4.4. We will now construct a natural map F → G of arcp-sheaves.
In fact, we will construct a map F → Γarcp(−;Z/pn); the desired map will then be
the composite with the canonical map Z/pn → G of arcp-sheaves.

To construct the map F → Γarcp(−;Z/pn), we claim that F is the arcp-
sheafification of H0(F ). Then, there is a map H0(F ) → H0

arcp(−;Z/pn), since
the étale topology is coarser than the arcp-topology. The claim about F implies
that this refines uniquely to a map F → Γarcp(−;Z/pn) of arcp-sheaves.

It remains to show that F is the arcp-sheafification of H0(F ). Suppose V is
a p-complete valuation ring with algebraically closed field; it suffices to show that
F (V ) = Γet(V [ 1p ];Z/p

n) is concentrated in degree zero. This is precisely [Staty,
Tag 0GY7].

The weight zero étale comparison Theorem 1.1 is now:

Proposition 4.5. The map F → G is an isomorphism.

Proof. Using Proposition 3.7, it suffices to show that if R is a perfectoid ring,
then the map Γet(R[ 1p ];Z/p

n) → (∆R/A[
1
d ]/p

n)ϕ=1 is an isomorphism. In this case,
∆R/A

∼= Ainf(R), so we need to show that there is a cofiber sequence

Γet(R[ 1p ];Z/p
n) → Ainf(R)[ 1d ]/p

n ϕ−1−−−→ Ainf(R)[ 1d ]/p
n.

Writing Ainf(R) = W (R♭), and using the isomorphism W (R♭)[ 1d ]
∼= W (R♭[ 1d ]), we

obtain an exact sequence

Γet(R
♭[ 1d ];Z/p

n) → W (R♭)[ 1d ]/p
n ϕ−1−−−→ W (R♭)[ 1d ]/p

n

induced by the Artin-Schreier sequence

(3) 0 → Z/pn → Wn
ϕ−1−−−→ Wn → 0

It therefore suffices to show that Γet(R
♭[ 1d ];Z/p

n) ∼= Γet(R[ 1p ];Z/p
n), which can be

deduced using Scholze’s tilting equivalence on étale sites.
A different approach is to still use the fact that both sides of the map Γet(R[ 1p ];Z/p

n) →
(∆R/A[

1
d ]/p

n)ϕ=1 satisfy arc-descent, to reduce to the case when R =
∏

I V is a
product of p-complete absolutely integrally closed valuation rings of rank ≤ 1.
(Recall from Lemma 3.6 that every p-adic affine formal scheme admits an arcp-
cover of this form.) By the discussion in Construction 4.4, the étale cohomology
Γet(R[ 1p ];Z/p

n) is discrete: in fact, it is isomorphic to (Z/pn)I . On the other
hand, since each V is perfectoid (see the proof of Lemma 3.6), we see that R
is a product of perfectoid rings, so that ∆R/A

∼= Ainf(R) = W (R♭). Moreover,
∆R/A[

1
d ]

∼= W (R♭)[ 1d ]
∼= W (R♭[ 1d ]). Therefore, the desired exact sequence follows

from the Artin-Schreier sequence (3). □
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In both cases, one uses the arcp-topology, and either Proposition 3.7 or explicit
calculations for p-complete absolutely integrally closed valuation rings of rank ≤
1, to reduce to calculations for perfectoids. Here, the perfectness of everything
involved makes many things discrete, so that calculations become more concrete.
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