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The functor Ω gives an equivalence between pointed connected spaces and group-like E1-
algebras in spaces (∞-groups), so we can approach our study of spaces by studying groups.
A nilpotent discrete group is effectively studied via its Lie algebra, and the higher homotopy
groups in ΩX should be thought of as a nilpotent thickening of the group π1X. Thus if X
is a nilpotent space, we can expect the data of X to be largely captured by Lie algebra data
associated to ΩX.

1. Whitehead and Samelson products

A basic incarnation of this is the fact the associated graded of the lower central series of
the homotopy groups of ΩX forms a Lie algebra1. The origin of this Lie algebra structure is
exactly the same as for discrete groups: it comes from the commutator map.

Given a pointed space V , we can take homotopy groups with coefficients in V , i.e πVi (X) =
πi(X

V ) = [ΣiV,X]. In what follows, one may assume W,V = S0 to obtain statements
about ordinary homtopy groups. Given x ∈ πVk (ΩX), y ∈ πWn (ΩX), the commutator map
c(x, y) = xyx−1y−1 gives a map2,

ΣkΣn(V ∧W )
∼−→ ΣkV ∧ ΣnW → ΩX ∧ ΩX

c−→ ΩX

which we denote 〈x, y〉, and is called the Samelson product. The universal case of the
Samelson product is when X = Σ(ΣkV ∨ΣnW ), where it amounts to a map ΣkΣn(V ∧W )→
ΩΣ(ΣkV ∨ ΣnW ).

This is adjoint to a map ΣΣkΣn(V ∧W )→ Σ(ΣkV ∨ΣnW ), and one sees that the composite

ΣΣkΣn(V ∧W )→ Σ(ΣkV ∨ ΣnW )→ Σk+1V × Σn+1W

is canonically null, since the adjoint map is null since ΣkV and ΣnW canonically commute
in ΩΣ(ΣkV )× ΩΣ(ΣnW ).

Date: 2/24/2022.
1if π1 acts trivially on πn, the lower central series is trivial, and so the Lie algebra structure is just on

π∗ΩX.
2It is written as ΣkΣn rather than Σk+n to indicate the sign.
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This nulhomotopy in fact gives rise to a cofibre sequence. To check this, it suffices to
observe that we can assume n, k = 0, and V,W are finite sets, since the sequence commutes
with sifted colimits. Then this amounts to the fact that the product (∨l1S1) × (∨m1 S1) is
obtained from (∨l1S1)∨ (∨m1 S1) by attaching 2-cells killing all commutators between the two
parts.

The Whitehead product is up to a sign, adjoint to the Samelson product. Given maps x ∈
πVk+1(X), y ∈ πWn+1(X), the Whitehead product is the operation denoted [x, y] ∈ πV ∧Wk+n+1(X)
corepresented by the map

ΣkΣΣn(V ∧W )
∼−→ ΣΣkΣn(V ∧W )→ Σ(ΣkV ∨ ΣnW )

where the second map is adjoint to the Samelson product.
On the level of homotopy classes, we have that [x, y] is adjoint to (−1)x+1〈x′, y′〉. We

claim that the Whitehead product satisfies Lie algebra identities:

Lemma 1.1. The Whitehead product satisfies for x ∈ πUi (X), y ∈ πVj (X), z ∈ πWk (X) for
i, j, k ≥ 2:

(1) It is bilinear.
(2) [x, y] = (−1)|xy|[y, x]
(3) [[x, y], z](−1)|xz| + [[y, z], x](−1)|yx| + [[z, x], y](−1)|zy| = 0

Proof. We will check the most interesting relation, (3). On the level of Samelson products,
it corresponds to the identity:

• 〈x, 〈y, z〉〉+ 〈y, 〈z, x〉〉(−1)|x(y+z)| + 〈z, 〈x, y〉〉(−1)|z(x+y)| = 0

This follows from the fact that in any group, [x, [y, z]][y, [z, x]][z, [x, y]] = 1 modulo com-
mutators of length 4. Iterated Samelson products of length 4 in 3 variables are null, since

they are factor through a map smashed with a diagonal map of the form Sk
∆−→ Sn ∧ Sn,

which is null since since n ≥ 1. Thus the desired relation holds. �

When i, j, k are allowed to be 1, the relations are still satisfied, but only in the associated
graded of the lower central series.

Note from the proof of Lemma 1.1 that there does not seem to be a canonical homotopy
for the Jacobi identity.

2. Hilton–Milnor and James Splitting

It turns out that iterated Whitehead/Samelson products, along with the homotopy groups
of spheres, account for all n-ary natural operations on homotopy groups with coefficients in
some spaces X1 . . . Xn. The precise result along these lines is the Hilton–Milnor theorem,
which describes a decomposition of the free E1-group on a wedge sum of connected spaces.

Theorem 2.1 (Hilton–Milnor). Let n ≥ 1, and Xi connected. There is a natural equivalence∏
wI

ΩΣX∧wI
∼−→ ΩΣ ∨n1 Xi, where wI is a basis for the free Lie algebra3 on Xi, 1 ≤ i ≤ n.

3Note that the free Lie algebra appearing Theorem 2.1 is alternating rather than antisymmetric, in that
[x, x] = 0. This does not mean however that [x, x] = 0 for Whitehead products, since it simply appears as a
higher homotopy group of a sphere.

2



The map in the theorem is given by iterated Samelson products determined by the basis
element of the free Lie algebra. The projections in the other direction, which are dependent
on the ordering of the basis, are called the Hilton–Hopf invariants.

This result can be thought of as reflecting the nilpotence of ΩΣX as follows: A discrete
group X has a lower central series with associated graded a Lie algebra. If X is nilpotent,
we can choose lifts of the associated graded and get an equivalence (of sets) of X with the
product of the terms in the associated graded. The associated graded of a free group is the
free Lie algebra, but it is not true that a free group on more than one generator is nilpotent.
But nevertheless, as long the space over which one takes the free group is connected, the
product map from the associated graded is an equivalence, because the higher filtration
terms become highly connected.

Two approachs to proving Theorem 2.1 are to either use Mather’s second cube theorem
(see for example [DH19]), or to use facts about free groups, and geometrically realize these
to say something about free E1-algebras. Ultimately these are proofs doing the same thing
but the former is more axiomatic and so works in a bit more generality.

ΩΣ commutes with geometric realizations, so whatever we say about it reduces to the case
of discrete sets, in which case it coincides with the free group functor. It is a result of Milnor
[Mil72] that the free simplicial group on X, denoted FX, is a model for ΩΣX. He used this
model to prove the results below, but all one really needs is that the functor ΩΣ preserves
geometric realizations (which is model independent, and follows from Milnor’s result).

Lemma 2.2. There is a split exact sequence of groups 1 → ΩΣ(B ∨ B ∧ ΩΣA) → ΩΣ(A ∨
B)→ ΩΣA→ 1.

Proof. The kernel of the projection map is the free group generated by b ∈ B and [b, w],
where w is a nontrivial word in FA. The sequence obviously splits. �

Lemma 2.3. There is an equivalence of groups ΩΣ(B∧ΩΣA) ' ΩΣ(B∧A∨B∧A∧ΩΣA).

Proof. The free group generated by [b, w] for w a nontrivial word in A is also freely generated
by [b, a] and [[b, a], w] for w running over nontrivial words in A. �

The lemma above, as a statement at the level of groups, can be delooped to get the James
splitting Σ(B ∧ ΩΣA) ' Σ(B ∧ A ∨B ∧ A ∧ ΩΣA).

Proposition 2.4. Let A be connected. Then there is a split exact sequence of E1-algebras
1→ ΩΣ(∨∞0 B ∧ A∧i)→ ΩΣ(A ∨B)→ ΩΣA→ 1

Proof. Apply Lemma 2.2 and Lemma 2.3 repeatedly, using the fact that A∧n∧ΩΣA becomes
highly connected. �

Similarly, the James splitting can be iterated to obtain:

Theorem 2.5. (James) If X is connected, there is an equivalence ∨∞0 ΣX∧i ' ΣΩΣX.

Theorem 2.1 is a consequence of Proposition 2.4: one simply repeatedly applies the propo-
sition, observing that the remaining factors become more and more highly connected. Tracing
through the construction, we find that the equivalence is given by the product of iterated
Samelson products where the order of the product is chosen by the order in which we have
realized the equivalence.
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The James splitting is very useful. For example, adjoint to the projection of ΣΩΣX onto
the factors are the James-Hopf maps Hn : ΩΣX → ΩΣX∧n. It is these maps that are
traditionally used in the construction of EHP sequences.

3. The EHP Sequence

The EHP sequence is a fibre sequence due to James at the prime 2 and Toda at odd
primes, which relates the homotopy groups of different spheres. One can also view it as
giving an understanding of the spectral sequence of the tower ΩnSn approximating QS0.

At the prime 2, we will identify the fibre of the second James-Hopf map H2 : ΩΣSn →
ΩΣS2n with Sn.

Theorem 3.1. There is a 2-local fibre sequence Sn
E−→ ΩΣSn

H−→ ΩΣS2n where H is the
James-Hopf map H2. For n odd, one need not 2-localize.

Proof. First, we claim that H is an isomorphism on H2n. To see this, ΣH factors as
ΣΩΣSn → ΣS2n → ΣΩΣS2n, where the first map is the projection from the James splitting,
and the second is the counit. Both of these maps are isomorphisms on H2n+1.

Next, we claim that atleast 2-locally, H2 is an isomorphism in cohomology in all degrees
where it is nonzero. For n = 2k even, we know that the generator y4k of H∗(ΩΣS4k) is sent

to x
(2)
2k , the second divided power of the class in degree 4n of H∗(ΩΣS2k). It follows that y

(l)
4k

is sent to x
(2l)
2k

(2l)!
2ll!

, which is a unit multiple of the generaor x
(2l)
2k in that degree. It follows

from the Serre spectral sequence that inclusion of the fibre on homology agrees with E, but
then the map must just be E.

For n = 2k + 1, the divided power generator gets sent to a divided power generator,
and so again one sees via the Serre spectral sequence that the fibre is Sn, but this time
integrally. �

The P in the EHP sequence is for Whitehead product, and refers to the associated map
P : Ω2ΣS2n → Sn on the bottom cell is the Whitehead square of the identity, which is easy
to see from the definition of the Whitehead product.

The fibre sequence Sn
E−→ ΩΣSn

H−→ ΩΣS2n splits at odd primes for n odd: the map
Ω[in+1, in+1] gives a splitting up to isomorphism. One can multiply the section and the
inclusion of the fibre to obtain:

Corollary 3.2 (Serre). After inverting 2, there is an equivalence S2k−1 × ΩS4k−1 ' ΩS2k.

The EHP sequence for n odd doesn’t split at the prime 2 unless there is an element of
Hopf invariant 1.

Let JiX be the ith term in the James filtration on the free monoid on X. The odd prime
extension of the EHP sequence is below.

Theorem 3.3. There are p-local fibre sequences:

Jp−1S
2n → ΩΣS2n Hp−→ ΩΣS2np

S2n−1 → ΩJp−1S
2n → ΩΣS2np−2
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4. James’ torsion bound

A fundamental phenomena that is different between stable and unstable homotopy groups
of spheres is that the unstable groups for a fixed group have a uniform torsion bound at each
prime. The first result in this direction was due to James [Jam57], in the last of a series of
three papers on the EHP sequence.

Theorem 4.1. (James) There is a 2-local factorization

Ω3S2n+1 Ω3S2n+1

ΩS2n−1

4

E2

By induction, we obtain

Corollary 4.2. There is a factorization

Ω2n+1S2n+1 Ω2n+1S2n+1

ΩS1 = Z

4n

E2

In particular 4n kills the 2-primary torsion in the homotopy groups of S2n+1. Note also
that by the EHP sequence, this provides torsion bounds on the homotopy groups of S2n

as well. At odd primes, the work of Cohen–Moore–Neisendorfer shows that pn kills the
p-primary torsion for S2n+1.

The conjectured optimal torsion bound at the prime 2 is the order of the restriction of the
universal line bundle γ in the diagram below, which is known to be a lower bound.

RP2n BO

Ω2n+1S2n+1〈2n+ 1〉

γ

In order to prove Theorem 4.1, we will produce the following diagram

Ω3S2n+1

Ω2S2n Ω3S2n+1

ΩS2n−1 Ω2S2n Ω3S2n+1E E

E

1−Ω(−1) 2

2

The square in the diagram is commutative because there are natural homotopies between
Σf ◦ (−1) and (−1) ◦ Σf for f any map between suspensions, because one can do the map
−1 in the suspension coordinate.

So it suffices to show that the dashed arrows in the diagram above exist. By the EHP
sequence it then suffices to show the proposition below

Proposition 4.3. The composites

Ω2Sn
1−Ω(−1)−−−−−→ Ω2Sn

ΩH−−→ Ω2S2n−1
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and
Ω2S2n+1 2−→ Ω2S2n+1 ΩH−−→ Ω2S4n+1

are null.

Proof. The first statement follows from the commutative square

ΩΣSn−1 ΩΣS2n−2

ΩΣSn−1 ΩΣS2n−2

H

ΩΣ−1 ΩΣ(−1∧−1)=1

H

with the additional observation that ΩH is a group homomorphism.
For the second statement, note that we have the following commutative diagram

ΩΣS2n ΩΣ(S2n ∨ S2n) ΩΣS2n

∏
w ΩΣS2n|w|

0

ΩΣpinch

h

ΩΣ(1∨−1)

f

Where h is the Hilton–Hopf invariants, and f is the product of iterated Samelson products.
In odd degrees, any iterated Samelson product of the identity of length ≥ 3 vanishes, so the
composite factors as

ΩΣS2n 1,1,h2−−−→ ΩΣS2n × ΩΣS2n × ΩΣS4n Ω1×Ω−1×Ω[1,−1]−−−−−−−−−−→ ΩΣS2n

It follows that 0 = 1 + Ω(−1) + Ω[1,−1] ◦ h. Looping so that everything is a group
homomorphism, composing with ΩH, and using that ΩH(Ω(−1)) = ΩH, we get 2ΩH =
−Ω(H ◦ Ω[1,−1] ◦ h). We claim that H ◦ Ω[1,−1] is null. [1,−1] is a suspension since it is
2-torsion, and its Hopf invariant lands in a torsion-free group. Write [1,−1] = Σv. Then we
have a commutative diagram

ΩΣS4n ΩΣS8n

ΩΣS2n ΩΣS4n

H

ΩΣv ΩΣ(v∧v)

H

But Σv ∧ v factors through Σv ∧ 1 = Σ2nv, and Σ2v is null by the EHP sequence.
�
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