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Dates: usually year I first saw the proof; often precedes publication date
Spaces/maps localized at prime p
Unless specified otherwise, valid for any p

Notation and Terminology: using notation from 1980

Sm〈m〉 := homotopy fibre of Sm → K(Z,m).
C(n) := homotopy fibre of E2 : S2n−1 → Ω2S2n+1

If X an H-space, k : X → X denotes x 7→ xk. (If not homotopy-associative pick some order, say
left-to-right)

X{k} := homotopy fibre of k : X → X.
Note: If X homotopy abelian k : X → X is an H-map so X{k} an H-space in this case.

If k : X → X is null homotopic say “k is an H-space exponent for X” (stronger than homotopy
exponent)

If X co-H-space, k : X → X denotes k-fold product (in some order) of 1X ∈ [X,X].
Pm(k) := Sm−1 ∪k em Moore space
πn(X;Z/p) := [Pn(p), X]
Map∗(X,Y ) := space of pointed maps from X to Y .
If X, Y H-groups (homotopy associative with homotopy inverse); f : X → Y

D(f) : X ×X → Y by D(f)(a, b) := f(b)−1f(a)−1f(ab). H-deviation.
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1 Preliminaries

If p > 2, S2m−1 becomes homotopy assoc/abelian H-space

Proposition 1 X H-space. Map∗(S
n, X{k}) = Map∗(P

n+1(k), X)

Proof. Both are the homotopy fibre of y 7→ yk in Map∗(S
n, X) = ΩnX

Proposition 2 (Univ Coeff Thm)

0 → πn(X)⊗ Z/p → πn(X;Z/p) → Tor
(

πn−1(X),Z/p
)

→ 0

If p > 2:
Sequence splits
1Pn(p) has order p in [Pn(p), Pn(p)] thus if Y is an H-space then ΩmY {p} has space exponent p

Proof. Cofibration Sn−1 → Pn(p) → Sn yields

πn−1(X) �p
πn−1(X) � πn(X;Z/p) � πn(X) �p

πn(X)

For p > 2, special case X = Pn(p): πn−1

(

Pn(p)
)

= Z/p; πn

(

Pn(p)
)

= 0
implies [Pn(p);Z/p] = Z/p
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Corollary 3 For p > 2
P k(p) ∧ Pn(p) ≃ Pn+k−1(p) ∨ Pn+k(p)

Proof. Smash cofibration Sn−1 → Pn(p) → Sn with P k(p) to get cofibration

Pn+k−1(p) → P k(p) ∧ Pn(p) → Pn+k(p)

using above (or otherwise) check it splits.

Fails for p = 2:
Why should p = 2 behave differently?
Difference can be traced back to the fact that the Steenrod operation Sq1 equals the Bockstein

so coproduct of Sq2 contains β ⊗ β; nothing corresponding to this at an odd prime.
Pn+k−1(2) ∧ Pn+k(2) has a nontrivial Sq2 (by Cartan) so cannot be a wedge.
1Pn(2) has order 4 in [Pn(2), Pn(2)]
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2 Between James/Toda and Cohen/Moore/Neisendorfer

Conjecture 4 (Barratt-Mahowald, ∼1965) (Open for p = 2; solved by C-M-N for p > 2)
p-torsion elements of π∗(S

2n+1) have order at most pn+ǫ where

ǫ =

{

0 p > 2 or p = 2 and n ≡ 0, 3 mod 4;

1 p = 2 and n ≡ 1, 2 mod 4

First open case: S7

Conjectural bound 8; best known bound 32

Theorem 5 (Gray, 1969) The bounds in conjecture 4 are best possible. (I.e. there exist elements
having maximum order specified)

Theorem 6 (Moore, 1976) (Grad Course): p2n is an H-space exponent for Ω2n(S2n+1〈2n+ 1〉)
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2.1 Subsequent extensions

1. Cohen/Moore/Neisendorfer (1980) p odd: pn is a space exponent for Ω2n(S2n+1〈2n+1〉)

2. Neisendorfer/Selick (1981) Ω2n−2(S2n+1〈2n+ 1〉) has no space exponent;

New proof (1986):

K(Z, 2n) → S2n+1〈2n+ 1〉 → S2n+1 → K(Z, 2n+ 1)

G locally finite group.

Miller (Sullivan Conj, 1984) Map∗(BG,X) ≃ ∗ for any finite complex X.

=⇒ Map∗
(

BG,K(Z, 2n)
)

≃ Map∗(BG,S2n+1〈2n+ 1〉)

Apply π2n−2( ) =⇒ [BG,K(Z, 2)] ∼= [BG,Ω2n−2(S2n+1〈2n+ 1〉)]

If Ω2n−2(S2n+1〈2n+ 1〉)] had H-exponent M then H2(BG) ∼= [BG,K(Z, 2)] would have uni-
form (independent of G) exponent M ⇒⇐

3. Selick (1982) If 2r is an exponent for π∗(S
4n−1) then 2r+1 is a homotopy exponent for π∗(S

4n+1).
Thus 2-torsion elements of π∗(S

2n+1) have order at most 23n/2+ǫ (ǫ as above).

4. Richter (1995) 23n/2+ǫ is a space exponent for Ω2n(S2n+1〈2n+ 1〉) when p = 2

5. Selick (1996) For p odd: Ω2n−1(S2n+1〈2n+ 1〉) has no space exponent.

Uses Anick’s fibration (Anick, 1991)

Open question: Does Ω2n−1(S2n+1〈2n+ 1〉) have a space exponent when p = 2?
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3 Homotopy Exponent for S3

4 is an exponent for 2-torsion of πk(S
3) by James

For the remainder of this section, assume p > 2.

Theorem 7 (Selick; 1977) The p torsion of S3 has exponent p.

Proof.
Plan: Ω2S2n+1{p} has exponent p.
Construct s : Ω2S3〈3〉 → Ω2S2n+1{p} and τ : Ω2S2n+1{p} → Ω2S3〈3〉 such that τ ◦ s induces a

homology isomorphism and thus a homotopy equivalence.

Step 1: Construct τ
BS3 = HP∞ → K(Z, 4) loops to S3 → K(Z, 3) so its fibre is a delooping B(S3〈3〉) of S3〈3〉.
Let α′ : S2p+1 → B(S3〈3〉) represent a generator of π2p+1

(

B(S3〈3〉
)

= Z/p, the least nonvanishing
homotopy group.
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ΩS2p+1 Ωα′

- S3〈3〉

S2p+1{p}

?
...........
ᾱ

- S3〈3〉

w

w

w

w

w

w

w

w

w

S2p+1

i

?
- E(S3〈3〉)

?

S2p+1

p

?
α′

- B(S3〈3〉)

?

pα′ = 0 =⇒ bottom square commutes.

ᾱ := an induced map of homotopy fibres. τ := Ω2ᾱ : Ω2S2n+1{p} → Ω2S3〈3〉

Note: Homotopy class of ᾱ is not uniquely determined by the diagram (depends on choices made in
realizing as commuting diagram of topological spaces) but any choice makes the top square commute,
which is sufficient to determine its induced map on homology.
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Step 2:
Naturality of James-Hopf invariant

ΩS2n+1 Hk- ΩS2nk+1

ΩS2n+1

q

?
Hk- ΩS2nk+1

qk

?

Set q = k = p. Write H for Hp.
H ◦ p = pp ◦H = ppH.

Note: H ◦ p 6= pH since H not an H-map.

First Attempt: Loop
pp(ΩH) = p(ΩH)
up(ΩH) = 0 where u = pp−1 − 1 (unit mod p) so p(ΩH) = 0.
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Ω2S2np+1{p}

..
..
..
..
..
..
.

H̄
�

Ω2S2n+1 ΩH- ΩS2np+1
?

ΩS2np+1

p

?

Let s be Ω2S〈3〉 → Ω2S3 H̄- Ω2S2p+1{p}

Potential Difficulty: It might not be easy to calculate s∗ on homology.

Examine more closely and show that s can be chosen to be an H-map. Then homology calculation
requires only knowing the images of the algebra generators.
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Theorem 8 Let f : X → Y , where X a homotopy associative H-space, Y an H-group. Suppose

X
f - Y

X

m

? f - Y

mp

?

Let j : A → X where (Lusternik-Schnirelman) category of A is less than p.
Then pfj = 0 ∈ [A, Y ].

Defn: cat(A) < m iff A can be covered by m subsets which are contractible in A (null homotopic
inclusion maps). Renumbered from the original L-S defn so cat(contractible set) = 0 rather than 1.

Whitehead: cat(A) < m iff A
∆m−1

- Am factors through the fat wedge of Am.

Proof. Inductively define higher H-deviations Dm(f) : Xm → Y by

Dm(f)(x1, . . . , xm) :=
(

Dm−1(f)(x1, . . . , xm−2, xm

)−1
·
(

Dm−1(f)(x1, . . . , xm−2, xm−1

)−1
·
(

Dm−1(f)(x1, . . . , xm−2, xm−1xm

)−1

and define fm : X → Y by X
∆m−1

- Xm Dm(f)- Y .
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Induction on m gives

Lemma 9

Dm(x1, . . . , xm) =

m
∑

j=1

∑

1≤i1<...ij≤m

Dj(f)(xi1 , . . . , xij )

Setting x1 = x2 = · · · = xm gives

Corollary 10 f ◦m =
∑m

j=1

(

m
j

)

fj

Lemma 11 Given the diagram in the theorem, fm = κmf where p divides κm for m > 1.

Proof.

mpf = f ◦m =
m
∑

i=1

(

m

i

)

fi

fm = (mp −m)f −

m−1
∑

i=2

(

m

i

)

fi

Apply Fermat and induction.
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Proof of Theorem

fp = (pp − p)f −

p−1
∑

i=2

(

p

i

)

fi

fi and the binomial coeffs are divisible by p but not p2.
Therefore all terms except one are divisible by p2. Thus fp = upf some unit u ∈ Z(p).
Using Whitehead reformulation of LS-category: cat(A) < p =⇒ fp ◦ j = 0 so pfj = 0.
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3.1 Construction of H-map Ω2S2n+1 → Ω2S2np+1{p}

ΩS2n+1 = BΩ2S2n+1.

B1(Ω
2S2n+1) ⊂ B2(Ω

2S2n+1) ⊂ . . . ⊂ Bk(Ω
2S2n+1) ⊂ · · · ⊂ B∞(Ω2S2n+1) = ΩS2n+1 Milnor filtration

Milnor gives charts showing LS-category Bk(G) ≤ k for any G.

Thus Thm. =⇒ B2(Ω
2S2n+1)

r- ΩS2n+1 H- ΩS2np+1 p- ΩS2np+1 is null
Note use of p > 2.

∃ lift λ : B2(Ω
2S2n+1) → ΩS2np+1{p}

Lemma 12 G
j- ΩB1(G) → ΩBk(G) is an H-map for k ≥ 2.

Given Lemma: Apply with G = Ω2S2n+1.
Let S be

Ω2S2n+1 j- ΩB2(Ω
2S2n+1)

Ωλ- Ω2S2np+1{p}

and let s be
Ω2(S3〈3〉) → Ω2S3 S- Ω2S2p+1{p}

(composite of H-maps)
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Proof of Lemma: Suffices to consider k = 2.
j : G → ΩΣG = ΩB1(G)

ΩE1(G)
∗- ΩE2(G)

..
..
..
..
..
..
.

�

G×G
D(j)- ΩB1(G)

? Ωr2- ΩB2(G)
?

G

Ωr∞

?
========= G

?

Since Ωr∞ and 1G are H-maps: Ωr∞ ◦D(j) = D(Ωr∞ ◦ j) = D(1G) = 0
Thus D(Ωr∞◦j) = Ωr∞◦D(j) factors through ΩE1(G) → ΩE2(G), loop of null map G∗G → G∗G∗G
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Step 3: Homology calculation

r : B2(ΩS
3〈3〉) → B∞(ΩS3〈3〉) = ΩS3〈3〉

Set j̄ : Ω2(S3〈3〉) → Ω2S3 j2- ΩB2(Ω
2S3) so Ωr ◦ j̄ = 1Ω2S3

τ := Ω2ᾱ s := Ωλ ◦ j̄
τ ◦ s = Ω2ᾱ ◦ Ωλ ◦ j̄

i : S2p+1{p} → S2p+1

Let H ′ be ΩS3〈3〉 → ΩS3 H- ΩS2p+1.
Recall Toda fibration

Jp−1S
2 → ΩS3 H- ΩS2p+1

proved using

Lemma 13 (Toda, 1956) H∗ : H2mp(ΩS
3) → H2mp(ΩS

2p+1) is multiplication by the unit (mp)!
m!(p!)j .

It follows that (H ′ ◦ ᾱ)∗ = (Ωi)∗ : H∗(ΩS
2p+1{p}) → H∗(ΩS

2p+1) up to mult by units — an
automorphism of H∗(ΩS

2p+1)

As Hopf algs
H∗(ΩS

3〈3〉) = (Z/p)[x2p]⊗ Λ[βx2p]

H∗(Ω
2S3〈3〉) = ⊗∞

k=1

(

Λ[a2pk−1]⊗ (Z/p)[βa2pk−1]
)

with generators primitive.
H-maps so suffices to check iso on indecomposables. Observing action of Bockstein checking odd

degree incomposables will do.

0-16



Let σ∗ : ΣHq(ΩX) → Hq+1(X) be homology suspension
Up to an automorphism (mult by the Toda units)

H ′
∗σ∗τ∗s∗ = H ′

∗σ∗(Ω
2ᾱ)∗(Ωλ)∗j̄∗ = σ∗(Ω

2i)∗(Ωλ)∗j̄∗ = σ∗(ΩH)∗(Ωr)∗j̄∗ = σ∗(ΩH
′)∗ = H ′

∗σ∗

But H ′σ∗ is a monomorphism on Qodd

(

H∗(Ω
2S3〈3〉)

)

so τ∗s∗ is iso in these dims.
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4 Later developments

Theorem 14 (Cohen/Mahowald, 1981) Let f : Ω2S2n+1 → Ω2S2n+1 induce an isomorphism
on H2n−1( ). Suppose n > 1. Then f is a homotopy equivalence.

Theorem 15 (Campbell/Peterson/Selick, 1985) Let f : ΩkSm+1 → ΩkSm+1 induce an iso-
morphism on Hm+1−k( ). Suppose m > k. If p = 2 assume m 6= 1, 3, 7; if p > 2 assume m even.
Then f is a homotopy equivalence.

Idea of Proof: Show that commutativity with the coalgebra structure and Steenrod operations
forces a homology isomorphism.

Definition 16 (Cohen/Moore/Neisendorfer) A space whose least non-vanshing group has dime-
sion 1 and having the property that any self-map inducing an isomorphism on that group is a homotopy
equivalence is called atomic.

Using these ideas:

Theorem 17 Ω2S3〈3〉 is atomic. That is, let f : Ω2S3〈3〉 → Ω2S3〈3〉 induce an isomorphism
on H2p−2( ). Then f is a homotopy equivalence.

Corollary: Return to “First “Attempt” of Step 2 of last section, skip the rest and write QED.
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Assume p odd. C-M-N diagram

D(n) - Ω2S2n+1{p} - C(n)

D(n)

w

w

w

w

w

w

w

w

w

- Ω2S2n+1
?

π- S2n−1
?

Ω2S2n+1

p

?
==== Ω2S2n+1

E2

?

Corollary 18 D(p) → Ω2S2p+1{p}
τ- Ω2S2〈3〉 is a homology isomorphism.

Proof. They have the same homology including coalgebra structure and Steenrod operations. Check
iso on H2p−2( ).

Corollary 19 The fibration D(p) → Ω2S2p+1{p} → C(p) splits. In particular, the other factor in
the decomposition of Ω2S2p+1{p} is C(p).

NonConjecture 20 The fibration D(n) → Ω2S2n+1{p} → C(n) splits

Won’t conjecture because
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Theorem 21 (Selick, 1980) Ω2S2np+1{p} is indecomposable except (possibly) in cases where there
exists an element of Arf invariant 1 mod p in the stable homotopy group πs

2n(p−1)−2(S
0).

Theorem 22 (Ravenel, 1978) For p > 3, there exists an element of Arf invariant 1 mod p in πs
2n(p−1)−2(S

0)
only when n = 1.

Thus for p > 3, Theorem 19 provides the only example where NonConjecture 20 holds.

p = 3: Arf invariant problem is still open. Steve Amelotte (2017) has provided an example where
the fibration splits.

Theorem 23 (Amelotte, 2017) Localized at 3, ΩS55{3} ≃ B2C(9)×BC(27)

For p = 2

Theorem 24 (Cohen, 1983) (Ω2S5){2} ≃ Ω2S3〈3〉 × C(2)
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5 Cohen’s p = 2 version of Selick’s Thm

p = 2

2 = Ω(2) : ΩS2n+1 → ΩS2n+1 iff S2n+1 H-space.

We noted problem at p = 2 showing existence of H-lift Ω2S2n+1 → (Ω2S2n+1){2}
Using atomicity, don’t need an H-lift: can use any lift to prove Cohen’s Thm. 24, but not obvious

any lift exists.
James still gives Ω(4) ◦H = H ◦ 2 but even after looping this does not give 4ΩH = 2ΩH.

Thm. 24 will follow from atomicity if we can show 2ΩH = 0 in some other way.

Theorem 25 (Cohen, 1982; Barratt was here?) 2ΩH = 0 : Ω2S2n+1 → Ω2S4n+1

Proof.
Σ[ιm, ιm] = 0
2[ι2n+1, ι2n+1] = 0
[[ι2n+1, ι2n+1], ι2n+1] = 0

Set w := [ι2n+1, ι2n+1] : S
4n → S2n+1

S2n → ΩS2n+1 H- ΩS4n+1 (James)
2H#(w) = 0 ∈ π4n(ΩS

4n+1) = Z so H#(w) = 0
Therefore, w = Σf , some f ∈ π4n(S

2n)
f ∧ f = f ◦ Σ2nf = f ◦ Σ2n−1w = 0 ∈ π8n(S

4n)
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J(S4n) J(f) = Ωw- J(S2n)

J(S8n)

H

?
J(f ∧ f) = 0- J(S4n)

H

?

Thus H ◦ Ωw = 0
Also H ◦ Ω(−1) = H James

Hilton-Milnor: h := Hilton-Hopf invariant

ΩS2n+1
Ω(j + k)

- ΩS2n+1

Ω(S2n+1)3

∆2

? Ω(j)× Ω(k)× (Ωw ◦ Ω(jk) ◦ h)
- Ω(S2n+1)3

m

6

(Would have been more terms, but [[ι2n+1, ι2n+1], ι2n+1] = 0)
Ω2(j + k) = Ω2(j) + Ω2(k) + w ◦ Ω2(jk) ◦ h ∈ [Ω2S2n,Ω2S2n]

0 = 1 + Ω2(−1) + w ◦ Ω2(−1) ◦ h. Compose with ΩH:
0 = ΩH +ΩH ◦ Ω2(−1) + ΩH ◦ Ωw ◦ Ω2(−1) ◦ Ωh = ΩH +ΩH + 0
2ΩH = 0
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Theorem 26 (Selick, 1982) If 2r is an exponent for π∗(S
4n−1) then 2r+1 is a homotopy exponent

for π∗(S
4n+1).

Proof. Let Q be the pullback of H : ΩS2n+1 → ΩS4n+1 and ΩS4n+1{2} → ΩS4n+1.

ΩS2n ======= ΩS2n

Ω3S4n+1 j - ΩQ

a

?
- Ω2S2n+1

?

Ω3S4n+1 2- Ω3S4n+1

w

w

w

w

w

w

w

w

w

w

k- Ω2S4n+1{2}

b

?
- Ω2S4n+1

ΩH

?
2- Ω2S2n+1

By Cohen, 2ΩH = 0 so principal fibration Ω3S4n+1 → ΩQ → Ω2S2n+1 splits.
Therefore ∃ s : ΩQ → Ω3S4n+1 such that s ◦ j = 1Ω3S4n+1

Let x ∈ π∗(Ω
3S4n+1).

b#j#(2x) = 2k#(x) = 0
Therefore j#(2x) = a#(y), some y ∈ π∗(ΩS

2n)
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S2n−1 E- ΩS2n H′

- ΩS4n−1

H ′
#(2

ry) = 2rH ′
#(y) = 0 by exponent of π∗(ΩS

4n−1) so 2ry = E(z), some z ∈ π∗(S
2n−1).

saE = 0 : S2n−1 → Ω3S4n+1

Therefore 0 = s#a#(Ez) = 2rs#a#(y) = 2r+1s#j#(x) = 2r+1.

To proceed further we need to show C(n) is a loop space (Gray, 1985).
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6 Delooping the homotopy fibre of the double sus-

pension

Conjecture 27 (Barratt-Mahowald∼1965) C(n) is a loop space.
For p > 2 (and sometimes for p = 2) it is a double loop space.

JkS
2n = Jk−1S

2n ∪wk
e2nk

Note: w2 = [ι2n, ι2n] : S
4n−1 → S2n (we do not use this)

Jp−1S
2n → ΩS2n+1 H- ΩS2np+1 (James, p = 2; Toda, p > 2)

=⇒ Ω2S2n+1 ΩH- Ω2S2np+1 ∂- Jp−1S
2n

For k ≤ p− 1, let Fk ⊂ Ω2S2np+1 be the restriction (pullback) to JkS
2n ⊂ Jp−1S

2n

Ganea-style argument: Take inverse images under ∂.
Restriction to e2n(p−1) and its subsets are trivial.
Ω2S2np+1 = Fp−2 ∪(S2n(p−1)−1×Ω2S2n+1) (e

2n(p−1) × Ω2S2n+1)
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Equivalently pushout/cofibration diagram

S2n(p−1)−1 × Ω2S2n+1 - e2n(p−1) × Ω2S2n+1

Fp−2

?
- Ω2S2np+1

∗ × ΩH

?

Fp−2/(S
2n(p−1)−1 × Ω2S2n+1)

?
==== Ω2S2np+1/Ω2S2n+1

?

Σ(S2n(p−1)−1 × Ω2S2n+1)

?
- Σ(e2n(p−1) × Ω2S2n+1)

?

Σ(S2n(p−1)−1 × Ω2S2n+1) = ΣS2n(p−1)−1 ∨ ΣΩ2S2n+1 ∨ Σ(S2n(p−1)−1 ∧ Ω2S2n+1)

→ Σ2n(p−1)Ω2S2n+1 → S2n(p−1)+2n−1 = S2np−1

Let G denote the composite

Ω2S2np+1 → Ω2S2np+1/Ω2S2n+1 = Fp−2/(S
2n(p−1)−1×Ω2S2n+1) → Σ(S2n(p−1)−1×Ω2S2n+1) → S2np−1
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Let B(n) denote the homotopy fibre of G.
Note: B(1) ≃ Ω2S3〈3〉

Theorem 28 (Gray, 1985) ΩB(n) ≃ C(n)
(Works at any prime; does not require localization.)

Proof. Ω2S2n+1 ΩH- Ω2S2np+1 G- S2np−1 is null by construction

Ω2S2n+1

	..
..
..
..
..
..
.

ν

B(n) - Ω2S2np+1

ΩH

?
G- S2np−1

Serre SS (or otherwise) shows H∗(Ω
2S2n+1) ∼= H∗(S

2n−1) ⊗ H∗

(

B(n)
)

and combining the diagram
with Toda’s calculation of (ΩH)∗ shows that the homotopy fibre of ν is S2n−1.

Therefore ΩB(n) ≃ C(n).

Major open conjecture:

Conjecture 29 For p > 2, choices in Gray/C-M-N can be made so that G = π : Ω2S2np+1 → S2np−1

up to some homotopy equivalences of domain and range. In particular D(np) ≃ B(n).

In particular, a key step in the proof above is that G◦ΩH is null; it is conjectured but not known
whether π ◦ ΩH is null.

0-27



Remark 30 By now there are multiple constructions of maps Ω2S2np+1 → S2np−1 whose homotopy
fibre loops to C(n). (I think I know at least 8.) None are known to be “equivalent” to π.

Further evidence for conjecture B(n) = D(np):
Arbitrary p

Theorem 31 (Richter, 2014; Harper, 1989 for p > 2 after looping))

Ω2S2np+1 G- S2np−1 E2

- Ω2S2np+1 is multiplication by p.

Corollary 32 Fibration B(n) → Ω2S2np+1{p} → C(np).

p = 2 analogues of Ω2S2p+1{p} splitting

Must distinguish between (ΩkS2m+1){2} and Ωk(S2m+1{2}) (same in Hopf Inv 1 cases)

Theorem 33

1. (Ω2S5){2} ≃ B(1)× C(2) (Cohen, 1983)

2. (Ω2S9){2} ≃ B(2)× C(4) (Cohen/Selick, 1986)

3. (Ω3S17){2} ≃ Ω
(

B(4)× C(8)
)

(Amelotte, 2017)

Theorem 34 (Campbell, Cohen, Peterson, Selick, 1983) (Ω2S2t+1){2} is indecomposable un-
less there exists Arf Invariant one element θ ∈ πS

2t−2 s.t. ηθ is divisible by 2. This condition im-
plies t ≤ 4.
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Theorem 35 (p > 3: Gray, 1985; p = 3: Theriault, 2006)

Proof. Fibration Yk → JkS
2n → ΩS2n+1 defines Yk (Thus Yp−1 = Ω2S2np+1)

Ganea argument yields Gk : Yk → S2n(k+1)−1 for 1 ≤ k ≤ p− 1
Fibration Bk → Yk → S2nk+2n−1 defines Bk. (Thus Bp−1 = B(n))

Yk−1
- S2n(k−1)+2n−1 = S2nk−1

	..
..
..
..
..
..
.

Bk
- Yk

?
- S2nk+2n−1

∗

?

B1 → Y1 → B2 → · · · → Bk−1 → Yk−1 → Bk → · · · → Bp−1 = B(n) → Yp−1 = Ω2S2np+1

Homology shows B1 → · · · → Bk−1 → Bk → · · · → Bp−1 = B(n) homotopy equivalences.
(Thus if k < p− 1 the fibration defining Bk splits to give Yk ≃ B(n)× S2n(k+1)−1.)

Yk × Ym
- JkS

2n × JmS2n - ΩS2n+1 × ΩS2n+1

Yk+m

?

................
- Jk+mS2n

?
- ΩS2n+1

?

B(n)×B(n) ≃ B1 ×B1
- Y1 × Y1

- Y2
- B2 ≃ B(n).
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Restriction to each summand of B(n)∨B(n) is the homotopy equivalence B(n) ≃ B1 ≃ B2 ≃ B(n)
so this defines a H-space structure on B(n).

Letting νk denote Ω2S2n+1 ν- B(n) ≃ Bk. For p > 3

Ω2S2n+1 × Ω2S2n+1 - Ω2S2n+1

B1 ×B1

ν1 × ν1

?
- Y2

- B3

ν3

?

νk corresponds to ν under Bk ≃ B(n) so ν is an H-map.
p = 3: Existence of H-space structure works; H-map proof fails since Bk ≃ B(n) requires k ≤ p− 1.

Theriault (2006) for p = 3 is complicated. (Skipped)

Lemma 36 Let F
j- E

q- B be a fibration with a retraction r : ΣkE → ΣkF of Σkj. Then
ΣkE ≃ Σk(F ×B).

Proof.

ΣkE
Σk∆- Σk(E×E) ≃ ΣkE ∨ΣkE ∨Σk(E ∧E)

r∨Σkq∨(r∧q)- ΣkF ∨ΣkB ∨Σk(F ∧B) ≃ Σk(F ×B)

induces a homology isomorphism.

Corollary 37 Σ2Ω2S2n+1 ≃ Σ2
(

S2n−1 ×B(n)
)
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Thus Σ2ν : Σ2Ω2S2n+1 → Σ2B(n) has a right homotopy inverse.

Lemma 38 (Theriault, 2006) Let f : X → Y s.t. Σ2f has a right homotopy inverse. Let Z be an
H-space and let g, h : Y → Z such that g ◦ f ≃ h ◦ f . Then g ≃ h.

Proof. Since Z is an H-space there is a retraction of Z → ΩΣZ so it suffices to show Σg ≃ Σh.
Let C be the homotopy cofibre of f .

X → Y → C → ΣX → ΣY
∗- ΣC → Σ2X → Σ2Y → . . .

Therefore Σ2X ≃ Σ2Y ∨ ΣC and ΣY → ΣC is null homotopic.
(

(Σg)(Σh)−1
)

◦ Σf ≃ ∗

ΣX
Σf - ΣY

∗ - ΣC

	..
..
..
..
..
..
.

ΣZ

(Σg)(Σh)−1

?

Therefore Σg ≃ Σh.
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Corollary 39 (Theriault, 2006)
p ≥ 3

1. B(n) has a unique H-space structure such that ν : Ω2S2n+1 → B(n) and B(n)
µ- Ω2S2np+1 are

H-maps. This H-structure is homotopy associative.

2. p is an H-space exponent for B(n).

Proof.

1. Σ2(Ω2S2n+1 × Ω2S2n+1)
ν×ν- B(n)×B(n) has a right homotopy inverse.

If m,m′ : B(n) × B(n) → B(n) are H-maps then m ◦ (ν × ν) = ν ◦mΩ2S2n+1 = m′ ◦ (ν × ν)
so m ≃ m′.

By Lemma, to show µ is an H-map it suffices to check that ν ◦ µ is an H-map. However
ν ◦ µ = ΩH : Ω2S2n+1 → Ω2S2np+1.

Σ2(Ω2S2n+1×Ω2S2n+1×Ω2S2n+1)
ν×ν×ν- B(n)×B(n)×B(n) has a right homotopy inverse.

By Lemma, to show m◦ (m×1B(n) = m◦ (1B(n)×m) : B(n)×B(n)×B(n) → B(n) it suffices
to show their compositions with ν×ν×ν are equal, which follows from the facts that Ω2S2n+1

is homotopy associative and ν is an H-map. Thus B(n) is homotopy associative.
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2. Since ν is an H-map, p ◦ ν = ν ◦ p : Ω2S2n+1 → B(n). By C-M-N, the latter is

Ω2S2n+1 π- S2n−1 E2

- Ω2S2n+1 ν- B(n)

which is null (last two maps are a fibration sequence).

Since p ◦ ν = ∗ and Σ2ν has a right homotopy inverse, Lemma implies p ≃ ∗.
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7 Anick’s fibration

p ≥ 3.

Conjecture 40 (∼1980)

∃ a fibration of H-space/maps S2n−1 → X(n) → ΩS2n+1 with the following properties

1. The boundary map ∂(n) : Ω2S2n+1 → S2n−1 is M-N-C’s π

2. The composite Ω2S2n+1 ΩH- Ω2S2np+1 ∂(np)- S2np−1 is null homotopic

3. Ω2X(np) ≃ C(n) (satisfying Barratt-Mahowald)

The last part is a consequence of the first two as follows:

Ω2S2n+1

	..
..
..
..
..
..
.

λ

ΩX(np) - Ω2S2np+1

ΩH

?
∂- S2np−1

By Serre (or otherwise), the homotopy fibre of λ is S2n−1 so Ω2X(np) = C(n).
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Theorem 41 (Anick, 1991) For p ≥ 5, ∃ fibration S2n−1 → A(n) → ΩS2n+1 satisfying Part (1)
of Conjecture 40.

Subsequent work (Anick-Gray, 1993; Theriault, 2001) showed that A(n) is a homotopy associa-
tive, homotopy commutative H-space, that the maps in the fibration are H-maps, and that A(n)
has the universal property: any map P 2n(p) → Z to a homotopy associative, homotopy commutative
H-space Z extends uniquely to an H-map A(n) → Z.
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7.1 Theriault’s Construction (2007)

Notation: Let X(m) denote m-fold smash product of X and let X(m) denote the m-skeleton of X.

Ω2S2n+1 → ΩS2n+1{p}
Ωj- ΩS2n+1 = J(S2n)

Wish to get

C(n) - A(n) - ΩS2n+1{p}

S2n−1
?

- A(n)

w

w

w

w

w

w

w

w

w

- ΩS2n+1

Ωj

?

There is no BS2n−1 (in general) but we do have a delooping of C(n).
Plan:

Construct appropriate φ : ΩS2n+1{p} → B(n) and take homotopy fibre to get A(n).
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Not using C-M-N but will use their notation.

ΩE2n+1(p) - ΩP 2n+1(p)
Ωq′- ΩS2n+1{p}

ΩF 2n+1(p)

?
- ΩP 2n+1(p)

w

w

w

w

w

w

w

w

w

Ωq- ΩS2n+1

Ωj

?

Compatible filtrations:
Fk(ΩS

2n+1{p}) := (Ωj)−1Jk(S
2n)

Fk

(

ΩP 2n+1(p)
)

:= (Ωq′)−1
(

Fk(ΩS
2n+1{p})

)

= (Ωq)−1Jk(S
2n)

F0(ΩS
2n+1{p}) = Ω2S2n+1

Set φ0 := ν : F0(ΩS
2n+1{p}) → B(n).

Suppose by induction that φk−1 : Fk−1(ΩS
2n+1{p}) → B(n) has been defined

0-37



JkS
2n = Jk−1S

2n ∪fk e2nk

Ganea:
Fk(ΩS

2n+1{p}) = Fk−1(ΩS
2n+1{p}) ∪(S2nk−1×Ω2S2n+1) (e

2nk × Ω2S2n+1)

I.e. Homotopy Pushout

S2nk−1 × Ω2S2n+1 π2 - Ω2S2n+1

Fk−1(ΩS
2n+1{p})

µ

?
- Fk(ΩS

2n+1{p})

?
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The restriction of the “action map” µ to Ω2S2n+1 is the connecting map ∂ in the defining fibration
Fk−1(ΩS

2n+1{p}) → Jk−1(S
2n) → ΩS2n+1.

To verify this:

Ω2S2n+1 ======= Ω2S2n+1 =========== Ω2S2n+1 ======== Ω2S2n+1

Ω2S2n+1

w

w

w

w

w

w

w

w

w

w

- S2nk−1 × Ω2S2n+1

?
µ- Fk−1(ΩS

2n+1{p})

∂

?
- ΩS2n+1{p}

?

∗
?

- S2nk−1

?
fk - Jk−1(S

2n)

?
- ΩS2n+1

?

By naturality of action maps, the middle column gives

S2nk−1 × Ω2S2n+1 µ- Fk−1(ΩS
2n+1{p})

Fk−1(ΩS
2n+1{p})× Ω2S2n+1

gk × 1Ω2S2n+1

?
µ′

- Fk−1(ΩS
2n+1{p})

w

w

w

w

w

w

w

w

w

where gk : S2nk−1 → Fk−1(ΩS
2n+1{p}) is the restriction of µ to S2nk−1.
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B(n) homotopy associative, so any map f : X → B(n) has a unique multiplicative extension
f̃ : ΩΣX → B(n).

To induce an extension φk : Fk(ΩS
2n+1{p}) → B(n) of φk−1 we need to show

S2nk−1 × Ω2S2n+1 π2- Ω2S2n+1 ν- B(n)
equals

S2nk−1 × Ω2S2n+1 µ- Fk−1(ΩS
2n+1{p})

φk−1- B(n) or, equivalently, that their multiplicative
extensions are equal. Show:

S2nk−1 × Ω2S2n+1 - ΩΣ(S2nk−1 × Ω2S2n+1)
˜φk−1 ◦ µ- B(n)

ΩΣΩ2S2n+1

ΩΣπ2

?
ν̃ - B(n)

w

w

w

w

w

w

w

w

w

ΩΣ(S2nk−1 × Ω2S2n+1) = Ω
(

ΣS2nk−1 ∨ ΣΩ2S2n+1 ∨ Σ(S2nk−1 ∧ Ω2S2n+1)
)

The restrictions to Ω2S2n+1 are equal (both are ν)

Need to show triviality of

S2nk−1 → ΩΣS2nk−1 → ΩΣ(S2nk−1 × Ω2S2n+1)
˜φk−1◦µ- B(n)

and

S2nk−1 ∧ Ω2S2n+1 → ΩΣ(S2nk−1 ∧ Ω2S2n+1) → ΩΣ(S2nk−1 × Ω2S2n+1)
˜φk−1◦µ- B(n)
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Since B(n) is an H-space suffices to show their compositions with B(n) → ΩΣB(n) are equal.
Adjoint:

First is
ΣS2nk−1 Σgk- ΣFk−1(ΩS

2n+1{p})
Σφk−1- ΣB(n)

Second is

ΣS2nk−1 ∧ Ω2S2n+1 Σgk∧1Ω2S2n+1- ΣFk−1(ΩS
2n+1{p}) ∧ Ω2S2n+1 →

Σ
(

Fk−1(ΩS
2n+1{p})× Ω2S2n+1

) Σµ′

- ΣFk−1(ΩS
2n+1{p})

Σφk−1- ΣB(n)

B(n) is homotopy associative so the retraction ΩΣB(n) → B(n) is an H-map.
Thus since B(n) has H-exponent p, to show these are trivial it suffices to show that Σgk is

divisible by p.

The similar Ganea pushout diagram for ΩP 2n+1(p) gives a lift ḡk : S2nk−1 → Fk−1

(

ΩP 2n+1(p)
)

Show Σgk is divisible by p by showing that its lift Σḡk is divisible by p.

P a(p) ∧ P b(p) = P a+b ∨ P a+b−1 yields by induction
(

P 2n(p)
)(k)

= P 2nk(p) ∨ ( )

James: ΣΩP 2n+1(p) = ∨∞
j=1Σ

(

P 2n(p)
)(j)

= P 2nk+1(p) ∨R for some wedge R of Moore spaces.

The homotopy fibre of the composite ΣFk−1

(

ΩP 2n+1(p)
)

→ ΣΩP 2n+1(p) → R is (2nk − 1) con-
nected with H2nk( ) = Z.
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Let t be the composite S2nk → homotopy fibre → ΣFk−1

(

ΩP 2n+1(p)
)

.

S2nk Hurewicz - fibre .....................................- fibre’ �
Hurewicz

P 2nk+1(p)

@
@
@
@

t

R 	�
�
�
�

t′

ΣFk−1

(

ΩP 2n+1(p)
)

?
Σjk−1- ΣΩP 2n+1(p)

?

R
?
=================== R

?

Show pt = Σḡk.
Proof. Through the (2nk + 1) skeleton, the split cofibration

P 2nk+1(p) → ΣΩP 2n+1(p) → R

is also a fibration. In particular

π2nk

(

ΣΩP 2n+1(p)
)

= Z/p⊕ π2nk(R).

The composite S2nk t- ΣFk−1

(

ΩP 2n+1(p)
)

→ R is null, so Σjk−1 ◦ t lifts to P 2nk+1(p) and
is thus determined by its image on H2nk( ); checking homology shows it is the standard inclusion
i : S2nk → P 2nk+1(p).
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Thus Σjk−1 ◦ t = t′ ◦ i which is the composition

S2nk i- P 2nk+1(p) → ΣP 2n(p)(k) → ΣΩP 2n+1(p).

Define X, Y , Z as the homotopy fibres in the fibration diagram

X - Y - Z

X

w

w

w

w

w

w

w

w

w

w

- ΣFk−1

(

ΩP 2n+1(p)
)

?
- ΣΩP 2n+1(p)

?

R
?
=============== R

?
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Upon restricting to (2nk + 1) skeletons the diagram becomes

ΣS2nk−1 p - ΣS2nk−1 - ΣP 2nk(p)

ΣS2nk−1

w

w

w

w

w

w

w

w

w

w

Σḡk- ΣFk−1(ΩP
2n+1)(2nk+1)

t

?
- (ΣΩP 2n+1)(2nk+1)

?

R(2nk+1)

?
============= R(2nk+1)

?

where the top row is the Hurewicz degree so the maps are as shown since they are determined by
homology.
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Let A(n) be the homotopy fibre of φ : Ω2S2n+1{p} → B(n).

S2n−1 - A(n) - ΩS2n+1

Ω2S2n+1
?

- ΩS2n+1{p}

?
- ΩS2n+1

w

w

w

w

w

w

w

w

w

w

B(n)

ν

?
======= B(n)

φ

?
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7.2 Gray’s Improvement (2008)

The Theriault construction gives a fibration satisfying Property 1 of the 1980 Conjecture, but it
was not so obvious that it has all its properties of Anick which had been shown by Anick-Gray and
Theriault.

M-N-C

ΩS2n+1{p} - E2n+1{p} - P 2n+1(p) - S2n+1{p}

ΩS2n+1
?

- F 2n+1{p}

?
- P 2n+1(p)

w

w

w

w

w

w

w

w

w

- S2n+1
?

As in M-N-C, Hm(F 2n+1{p}) =

{

Z m = 2nq;

0 otherwise.

ΩS2n+1 - F 2n+1{p} induces multiplication by p on homology.
Filter F 2n+1{p} by skeletons Fk(F

2n+1{p}) := F 2n+1{p}(2nk)
Filtering the other spaces by inverse images produces filtrations compatible with the Theriault

filtrations.
Apply the argument to E2n+1{p} rather than ΩS2n+1{p}.
By showing appropriate homotopy classes divisible by p, inductively construct E2n+1{p} → B(n)

thereby factoring Theriault’s ΩS2n+1{p} → B(n) through E2n+1{p}.
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More precisely, G-T shows that the attaching maps in F 2n+1{p} are divisible by p and use that
to show that any map from F0(E

2n+1{p}) = Ω2S2n+1 to a connected H-space with H-exponent p
extends to E2n+1{p}, thus producing the map E2n+1{p} → B(n).

This allows a proof that the total space A(n) of the fibration constructed above is homotopy
equivalent to that of Anick and, in particular, has additional properties (i.e. homotopy associative
commutative H-space, universal property) that were shown for Anick’s version.
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