
TRIVIAL NOTIONS TALK: MIRROR SYMMETRY FOR TORIC VARIETIES

Homological mirror symmetry is a supply of incredibly rich ideas relating algebraic geometry and
symplectic geometry, first suggested by Kontsevich in his famous 1994 ICM address. Unfortunately,
giving the usual form of the statement would requires us to introduce the Fukaya category, which I
don’t understand. However, if M is a smooth manifold, then (some version of) the Fukaya category of
its cotangent bundle T ∗M is supposed to be related to the category Cbl(M ;C) of constructible sheaves
of C-vector spaces on M (this is made precise in [GPS18, Theorem 1.1]). So, for the purposes of this
talk, we will adopt a more simplistic perspective on homological mirror symmetry: we will view it as
a bridge between the category QCoh(X) for an algebraic variety X and the category Cbl(X∨;C) on a
“dual” complex manifold X∨.

In this talk, we will explain a simple example of particularly well-behaved case of such a bridge, called
the coherent-constructible correspondence (proved in [NZ09, Nad09, FLTZ11a, FLTZ11b, FLTZ11c]). I
accidentally stumbled upon a baby case of this result when writing up a paper, and asked Ben Gammage
about it, who referred me to the above papers. Since I’m no expert in mirror symmetry, I thought I
could tell you how I bumped into this fascinating collection of ideas; hopefully my lack of experience
translates into the talk being more elementary/accessible. An appropriate subtitle for this talk could
be “1-dimensional topology is combinatorics”.

To explain my starting point, I want to begin with a simple example. Let’s consider the much simpler
subcategory of local systems on X∨. The simplest interesting case is X∨ = S1. It’s a classical fact
that local systems of C-vector spaces on S1 are determined by their monodromy π1(S

1) ∼= Z → GL(V )
with V ∈ VectC. At the level of categories, this says that Loc(S1;C) ≃ Mod(C[Z]). Since C[Z] is the
ring of functions on the affine group scheme Gm,C over C, we see that Loc(S1;C) ≃ QCoh(Gm,C).
More generally, if T is a torus, then we have an equivalence Loc(T ;C) ≃ QCoh(ŤC), where ŤC =
SpecC[π1(T )]. (This equivalence is even symmetric monoidal, where the tensor product of quasicoherent
sheaves on ŤC corresponds to convolution of local systems on T .) What happens if we take local systems
on T with coefficients in a different field, like Fp? It is easy to see that the same argument gives an
equivalence Loc(T ;Fp) ≃ QCoh(ŤFp), where ŤFp = SpecFp[π1(T )]. This can be interpreted as a
particularly simple case of the aforementioned bridge between the coherent and constructible worlds. It
is useful to view the above equivalence as broken down into two steps:

• There is an equivalence Loc(T ;C) ≃ Fun(Bπ1(T ),VectC), where Bπ1(T ) is the one-object
category whose morphisms are given by π1(T ).

• There is an equivalence Fun(Bπ1(T ),VectC) ≃ QCoh(ŤC).
There are (at least) two takeaways from this baby example:
(a) If one considers local systems onX∨ = T with coefficients in some ring k, then the corresponding

algebraic object X should be a k-scheme. In other words, the coefficients on the constructible
side is the base on the coherent side.

(b) All the topological data of the torus T is determined by the combinatorial object π1(T ), which
can be used to build the algebraic object Ť which “controls” the topology of T .

Part (a) can be turned on its head: it can be viewed as giving a large collection of examples of “nice”
algebraic varieties over k. This is a particularly useful perspective if k is a more exotic sort of ring (like
an E∞-ring, an example of which is the sphere spectrum).

Let me now turn to the way in which I stumbled upon this circle of ideas. Let’s fix a base ring
k throughout, and write ∗ to denote Spec(k). In the process of writing up a paper, I had the good
fortune to encounter the quotient stack A1/Gm, where Gm acts on A1 by scaling. If you’re not familiar
with stacks, that’s OK: all we will care about today is the category QCoh(A1/Gm), which can be
understood as the category of Gm-equivariant quasicoherent sheaves on A1. (Quasicoherent sheaves
on A1 do have an alternative simpler description, but let me belabor the point a bit.) Explicitly, an
object of QCoh(A1/Gm) is specified by a pair (F, α) where F is a quasicoherent sheaf on A1, and α is
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an isomorphism σ∗F ∼= pr∗F, where σ : Gm ×A1 → A1 is the scaling map and pr : Gm ×A1 → A1 is
the projection.

To understand QCoh(A1/Gm) better, let us first consider the category QCoh(∗/Gm) of Gm-equivariant
quasicoherent sheaves on ∗ = Spec(k) (with Gm acting trivially on ∗). This is the same thing as
a k-module with a Gm-action, i.e., a graded k-module; in other words, QCoh(∗/Gm) ≃ Modgr

k . If
Zds denotes the category whose objects are integers and whose only morphisms are the identity, then
Modgr

k ≃ Fun(Zds,Modk); this exchanges the tensor product of graded k-modules with Day convolution.
We conclude that there is a symmetric monoidal equivalence

(1) QCoh(∗/Gm) ≃ Fun(Zds,Modk).

We can now extend (1) to describe QCoh(A1/Gm). An object of QCoh(A1) is a module over k[t], i.e.,
a k-module M with an endomorphism t : M → M . If we put in Gm-equivariance, then M acquires a
grading

⊕
nMn. Since Gm acts on A1 with weight 1, the endomorphism t :M →M must increase the

grading by 1. In other words, t is a map Mn →Mn+1. So an object of QCoh(A1/Gm) is just a graded
k-module

⊕
nMn with a map Mn →Mn+1, i.e., is a filtered k-module. (Except that the maps between

each filtration step need not be injective.) We can state this in a manner similar to (1): let (Z,≥)
denote the poset of integers with ordering n ≤ n+ 1, viewed as a category. Then there is a symmetric
monoidal equivalence

(2) QCoh(A1/Gm) ≃ Fun((Z,≥),Modk),

where the symmetric monoidal structure on the right-hand side is via Day convolution.
One should compare (2) to the story with the torus above, where we said that Fun(Bπ1(T ),VectC) ≃

QCoh(ŤC): the category (Z,≥) plays the role of the category Bπ1(T ). Perhaps, then, there is also an
analogue of the equivalence Loc(T ;C) ≃ Fun(Bπ1(T ),VectC)!

Again, let us look at (1) as a motivating example. Recall that if Y is a topological space, then
Loc(Y ; k) ≃ Fun(Π≤1(Y ),Modk) where Π≤1(Y ) is the fundamental groupoid of Y . In the case of the
torus, the point was that Π≤1(T ) ≃ Bπ1(T ). In the case of (1), one can say something very similar:
the fundamental groupoid of the discrete space Z is precisely Zds. So (1) can be interpreted as an
equivalence

(3) QCoh(∗/Gm) ≃ Fun(Zds,Modk) ≃ Loc(Z; k).

Now, the case of the torus and (3) give us a clue: perhaps the secret lies in finding a procedure which
goes back from the categories Zds (resp. Bπ1(T )) to the spaces Z (resp. T ). There is indeed such a
procedure, known as geometric realization: it is the composite of the nerve functor N : Cat → Set∆

op

with the geometric realization functor | − | : Set∆
op

→ S. (Intuitively, the geometric realization of a
simplicial set X• replaces n-simplices with topological n-simplices.)

One might therefore expect that Fun((Z,≥),Modk) is equivalent to Loc(|(Z,≥)|; k). However, geo-
metric realization fails us here! Indeed, the geometric realization of the poset (Z,≥) is homotopy
equivalent to the real line R. But R is contractible, so all local systems on R are constant. In other
words, Loc(|(Z,≥)|; k) ≃ Modk, which is certainly not equivalent to Fun((Z,≥),Modk). What’s hap-
pened is that geometric realization has lost too much information: for example, suppose (Z,≤) is the
opposite of (Z,≥), i.e., we equip Z with the opposite ordering. Then the geometric realizations |(Z,≥)|
and |(Z,≤)| are both homotopy equivalent to R, since the geometric realization forgets the direction
of morphisms. However, one may expect that the extra data of the direction of morphisms in (Z,≥)
translates into some additional structure on R, which we can use to modify the category of local systems.

The appropriate modification is given by the category of “constructible sheaves (on |(Z,≥)| = R)
with specified singular support” (in fact, in general, one should consider sheaves on stratified spaces).
I didn’t know what this meant until last week, but it’s a simple idea at its core. Let M be a smooth
manifold. Let F be a sheaf of k-modules on M ; we will define a subset SS(F) ⊆ T ∗M . Suppose we
have a point (x, ξ) ∈ T ∗M , and ϕ : U → R be a differentiable function on a neighborhood x ∈ U ⊆ M
such that dϕ = ξ and ϕ(x) = 0. The inclusion U ∩ ϕ−1(−∞, 0) → U induces a map Res : Γ(U ;F) →
Γ(U ∩ ϕ−1(−∞, 0);F). We say that (x, ξ) ∈ SS(F) if Res is not an equivalence for some sufficiently
small neighborhood U . One can think of the failure of Res to be an isomorphism as being the failure of
a section of F over U ∩ ϕ−1(−∞, 0) to extend across ϕ−1(0). It turns out that SS(F) ⊆ T ∗M is conical
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and Lagrangian. If L ⊆ T ∗M is a conical Lagrangian subspace, we will write ShvL(M ; k) to denote the
full subcategory of Shv(M ; k) spanned by those sheaves F with SS(F) ⊆ L.

Let us do some examples:
(a) Suppose F is a sheaf on M such that SS(F) is the zero section of T ∗M . Then Res : Γ(U ;F)

∼−→
Γ(U ∩ ϕ−1(−∞, 0);F) for evey neighborhood x ∈ U ⊆ M and every differentiable ϕ : U → R
such that ϕ(x) = 0. Therefore, F is locally constant. In fact, F is locally constant if and only if
SS(F) is the zero section. This implies that ShvM (M ; k) ≃ Loc(M ; k).

(b) Let M = R, and suppose L is the union R∪T≥0
0 R. Then, we can consider the function ϕ(t) = t

on R (which has a zero at 0). Since (0, dϕ) ∈ L, we see that F ∈ ShvL(R; k) if Γ((−∞, ϵ);F) →
Γ((−∞, 0);F) is not an isomorphism for ϵ > 0, but F is locally constant on (−∞, 0) and
(0,∞). In other words, F is determined entirely by the modules M1 := Γ((−∞, ϵ);F), M2 :=
Γ((−∞, 0);F), and the restriction map M1 → M2.

An example of such a sheaf F is the pushforward of the constant sheaf on Z = [0,∞). Indeed,
if V is a small neighborhood of 0, then the map Γ(V ; kZ) → Γ(V ∩ ϕ−1(−∞, 0); kZ) is just the
map k → 0. Therefore, (0, dt) ∈ SS(kZ), as expected. We also see that (0,−dt) ̸∈ SS(kZ), since
taking ψ(t) = −t, the map Γ(V ; kZ) → Γ(V ∩ ψ−1(−∞, 0); kZ) is the identity map k → k.

In fact, suppose in general that ϕ :M → R is a function such that dϕ ̸= 0 on the zero locus
of ϕ. Let Z ⊆M denote the subset ϕ−1[0,∞). Then a little bit of thought reveals that

SS(kZ) = Z ∪ {(x, λ · dϕx)|ϕ(x) = 0, λ ≥ 0}.

If U is the complement of Z, one can consider the ∗-extension kU of the constant sheaf on U .
Then there is a recollement sequence kU → k → kZ , using which one can argue that

SS(kU ) = U ∪ {(x, λ · dϕx)|ϕ(x) = 0, λ ≤ 0}.

(c) Let x1, · · · , xn ∈M , and suppose L is the union M ∪
⋃n

i=1 T
∗
xn
M . Then ShvL(M ; k) consists of

those sheaves on M which are locally constant away from the points x1, · · · , xn.
The notion of singular support is very rich, but for our purposes, it suffices to understand what happens
when M is a 1-manifold. In this case, as with everything 1-dimensional, one can essentially encode
singular support with combinatorial data. Recall from (b) above that if L is the union R∪ T≥0

0 R, then
F ∈ ShvL(R; k) is determined entirely by the modules M1 := Γ((−∞, ϵ);F), M2 := Γ((−∞, 0);F), and
the restriction map M1 → M2. In fact, there is an equivalence ShvL(R; k) ≃ Fun(∆1,Modk), where ∆1

is the poset {0 < 1}.
This works in general. Let us assume for simplicity that M = R, and let L ⊆ T ∗R be a conical

Lagrangian. Since T ∗R = R ⊕R, the complement T ∗R −R has two components, and we will choose
one of them to be the “positive”/“up” part. Now L− (R ∩ L) is divided into “up” and “down” rays. If ℓ
is such a ray, it intersects the zero section R at a point which we will call the “source” of ℓ. From this
division, we can produce a directed graph P (L) whose vertices are given the following:

(a) Points x ∈ R which are the sources of rays ℓ such that ℓ,−ℓ ∈ L− (R ∩ L).
(b) Intervals [x, y] such that both of the following conditions are satisfied:

• x is the source of a down ray but not an up ray;
• y is the source of an up ray but not a down ray.

(c) Intervals (−∞, x) if x is the source of a down ray.
(d) Intervals (−∞, x] if x is the source of an up ray.
(e) Intervals (x,∞) if x is the source of an up ray.
(f) Intervals [x,∞) if x is the source of a down ray.

If i, j ∈ P (L), we draw a path i → j if j ∩ i ̸= ∅. For example, say L − (R ∩ L) is the union of n rays
ℓ. Then P (L) has n + 1 vertices corresponding to the intervals in R between the sources of the rays.
There is one edge for each ray ℓ: if ℓ is an up ray, then we draw a right arrow, and if ℓ is a down ray,
then we draw a left arrow. Figure 1 illustrates an example.

[STZ14, Theorem 3.7] says that there is an equivalence

(4) ShvL(R; k) ≃ Fun(P (L),Modk).

Let us do some sanity checks:
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Figure 1. Going from a conic Lagrangian L ⊆ T ∗R to a directed graph P (L). The
colors indicate the arrows in P (L) corresponding to the rays in L.

(a) If L is the zero section, then P (L) just has the one vertex, corresponding to (−∞,∞) = R.
Therefore, we recover the fact that ShvR(R; k) = Loc(R; k) ≃ Modk.

(b) If L is the union R ∪ T≥0
0 R, then there is one ray (given by the cotangent fiber R>0 at 0).

So P (L) has 2 vertices {(−∞, 0], (0,∞)}, and a single right arrow (−∞, 0] → (0,∞). In other
words, P (L) = ∆1; so we recover our calculation that ShvL(R; k) ≃ Fun(∆1,Modk). In fact, this
calculation is essentially the main input into [STZ14, Theorem 3.7], which is just a combinatorial
generalization.

Let’s finally return to our question of trying to interpret Fun((Z,≥),Modk) in terms of sheaves. Ac-
cording to (4), we just need to find a conical Lagrangian L ⊆ T ∗R such that P (L) = (Z,≥). But this
is straightforward given our definition of P (L): namely, define

LZ := R ∪
⋃
n∈Z

T≥0
n R.

In other words, if we write R as the geometric realization of (Z,≥), then LZ is obtained by drawing an
up ray at each 0-simplex of the resulting “triangulation” of R. See Figure 2.

Figure 2. The conic Lagrangian LZ ⊆ T ∗R.

Combining (4) with (2), we finally obtain:

Theorem 1. View A1 and Gm as k-schemes. Then there are (symmetric monoidal) equivalences

QCoh(A1/Gm) ≃ Fun((Z,≥),Modk) ≃ ShvLZ(R; k),

where the symmetric monoidal structures are tensor product of quasicoherent sheaves, Day convolution,
and convolution product for the addition on R, respectively.

(This was the result that I’d worked out before talking to Ben, but with a much cruder way of
defining ShvLZ(R; k).) There is an action of Z on R, which clearly respects the conic Lagrangian LZ;
so it must translate to an action of Z on Fun((Z,≥),Modk) and QCoh(A1/Gm). It is easy to say what
this action is on (Z,≥): it is simply given by the automorphism n 7→ n + 1. We showed in (1) that
QCoh(∗/Gm) ≃ Fun(Zds,Modk). The action of QCoh(∗/Gm) acts on QCoh(A1/Gm) describes the
Z-action on QCoh(A1/Gm).

It follows that the equivalence of Theorem 1 is Z-equivariant, so we may take quotients by this Z-
action. The quotient (Z,≥)/Zds is just BN, while the quotient R/Z is S1. (Note that this observation
actually proves that BN ≃ S1, which is not a priori obvious.) Thus:

Corollary 2. View A1 as a k-scheme. Let LS1 ⊆ T ∗S1 be the conic Lagrangian S1 ∪ T≥0
1 S1. Then

there are (symmetric monoidal) equivalences

QCoh(A1) ≃ Fun(BN;Modk) ≃ ShvL
S1 (S

1; k),
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where the symmetric monoidal structures are tensor product of quasicoherent sheaves, Day convolution,
and convolution product for the addition on R, respectively.

Note that this is very close to our discussion from the very beginning, where we said that

QCoh(Gm) ≃ Fun(BZ;Modk) ≃ Loc(S1; k).

In other words, the difference between N and Z is detected algebraically by the difference between A1

and Gm, and is detected topologically by the difference between LS1 and the zero section S1 ⊆ T ∗S1.
One can imagine a purely combinatorial generalization of this picture, where one replaces Z with a

lattice Λ. Given a sub-monoid σ of Λ, we may define a poset (Λ,≥σ) by declaring that a ≥σ b if a−b ∈ σ.
If σ is sufficiently nice, then there is a generalization of Theorem 1, relating QCoh(Spec k[σ]/Spec k[Λ])
to Fun((Λ,≥σ),Modk) and to ShvLσ (|(Λ,≥σ)|; k), where Lσ is a particular Lagrangian in T ∗|(Λ,≥σ)|.
The quotient stack Spec k[σ]/ Spec k[Λ] is an example of a toric stack. The generalization of Theorem 1
to general toric stacks is part of the coherent-constructible correspondence. In [She21], Shende gave a
much shorter proof of this combinatorial generalization using only Theorem 1 as input. However, his
argument didn’t use the above perspective on R as the geometric realization of (Z,≥)/as a stratified
space.
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