WHITEHEAD PRODUCTS

1. INTRODUCTION

The goal of this brief document is to study Whitehead products and provide some applications. Our
first general result is the following theorem.

Theorem 1.1. Let X be an oco-category with universal pushouts. For any pointed X € X, there is a
cofiber sequence

YEXMH S T (X)) = Jng (2X)
which rotates to the cofiber sequence of [DH19, Proposition 4.26].

As an application of Theorem 1.1, we pave a path to a motivic construction of the a-family, and
hence to answering [AF17, Question 6] positively. We begin by introducing some terminology. If S is
a scheme, let H(S) be the oo-category of motivic spaces over S. We let S™" denote the motivic space
ST AGHY. We show:

Theorem 1.2 ([AF17, Question 6]). Let p > 2. Then there is an element &1 € ap p+1(SL2)(C) whose
Betti realization is a1 € map(S?).
2. WHITEHEAD PRODUCTS

Recall from [DH19] that an co-category is said to have universal pushouts if it has finite limits and
pushouts, and the base-change of a pushout is still a pushout. The key tool is the following construction.

Construction 2.1. Let X be an oco-category with finite limits and pushouts, and let f : X — A and
g :Y — B be two maps of pointed objects of X. Define cofib(f, g) € X. via the pushout

A x B————cofib(f) x B

| |

A x cofib(g) — cofib(f, g).

Theorem 2.2. Let X be an oco-category with universal pushouts, and let f : X — A and g: Y — B be
two maps of pointed objects of X. There is a cofiber sequence

(X AY) — cofib(f, g) — cofib(f) x cofib(g).

Proof. We claim that it suffices to prove that if f : X — A and g : Y — B are two maps of pointed
objects of X, then there is a pushout square

(2.1) cofib(idx, g) ———= cofib(f, g)

| |

cofib(g) ———— cofib(f) x cofib(g).
Indeed, first note that cofib(idx,idy) sits in a pushout square
XXY —>X

| l

Y —— Coﬁb(idx, idy),
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so [DH19, Proposition 2.18] implies that cofib(idx,idy) ~ (X A Y). Therefore, setting g = idy in
(2.1) produces a pushout square

(2.2) DX AY) cofib(f,idy)

i i

* =~ cofib(idy ) — cofib(f) x cofib(idy) ~ cofib(f).
Attaching (2.2) to (2.1) gives a diagram
Y(XAY)———— cofib(f,idy) cofib(f, g)

l l |

x =~ cofib(idy ) —= cofib(f) X cofib(idy ) =~ cofib(f) ——= cofib(f) x cofib(g).

Both the left and right squares are pushouts, so the outer square is also a pushout; this is the desired
result.
We now prove that (2.1) is a pushout. Consider the diagram:

(2.3) X X cofib(g) — cofib(idx, g) ——— cofib(g)

l | |

A x cofib(g) —— cofib(f, g) —— cofib(f) x cofib(g),

where the rightmost square is (2.1). Since X has universal pushouts, the outermost square is a pushout.
To show that (2.1) is a pushout, it therefore suffices to show that the leftmost square of (2.3) is a
pushout. The leftmost square of (2.3) fits into the following diagram:

(2.4) X X B—— X x cofib(g) — A x cofib(g)

] |

B —— cofib(idx, g) —— cofib(f, g).

The leftmost square is a pushout, by the definition of cofib(idx, g). To prove that the rightmost square
(which is the leftmost square of (2.3)) is a pushout, it therefore suffices to show that the outermost
square of (2.4) is a pushout. To prove this, consider the following diagram, where the outermost square
is the outermost square of (2.4):

X x B Ax B A X cofib(g)

| |

B ——— cofib(f) x B — cofib(f, g).

Since X has universal pushouts, the leftmost square is a pushout. Moreover, the rightmost square is a
pushout by the definition of cofib(f, g); therefore, the outer square is a pushout, as desired. O

Proof of Theorem 1.1. We construct the map £" X" — J,(£X) by induction on n. When n = 0,
this is just the projection map X — *. For n > 1, recall that there is a pushout square

SX X Jue 1 (SX) Uy, mx) Jn(EX) —— Jo(EX)

| |

UX X Jp(EX) ———— J 1 (IX).
It therefore suffices to show that there is a cofiber sequence

SPXAH S SX X Sy 1 (SX) Uy, mx) Je(5X) = X x Ju(5X).

2



We now apply Theorem 2.2 to the maps f : X — % and g : ¥" ' X" — J,_1(XX) (where the
latter map comes from the inductive hypothesis). It is clear that cofib(f) ~ XX, and the inductive
hypothesis gives cofib(g) ~ XX X J,(XX). To conclude, it therefore suffices to note that Construction
2.1 immediately yields an equivalence

cofib(f, g)  BX x J_1(EX) Uy, (=x) Jn(2X).
O

Remark 2.3. Let X be an oo-category with universal pushouts, and let X,Y € X be a pair of pointed
objects. By the Hilton-Milnor theorem of [DH19, Theorem 3.1], there is an equivalence

QX VYY)~ QX x QY x QN(QX A QY).
In particular, there is a map
XANY 5 QXX AQYY - QE(QX AQY) - QE(X VY).
The adjoint to this map is the Whitehead product w : (X AY) — (X VY). It may equivalently

be viewed as the map X(X AY) — cofib(f,g) from Theorem 2.2 applied to the maps f : X — % and
g:Y —

3. MoTIVIC a1

In this section, we prove Theorem 1.2. Recall that by [DH19, Example 2.3] (see also [Hoy17, Propo-
sition 3.15]), all small colimits are universal in H(SS).

Corollary 3.1. Suppose n and w are integers such that n —w > 1. Then for any scheme S, there is a
map STEFD=LwkAD 7 (8™ in H(S) whose cofiber is equivalent to Jy41(S™Y).

Proof. Since n —w > 1, the space S™" is a suspension. The claim is now an immediate consequence of
Corollary 1.1. O

Remark 3.2. The map S*F+D-1Lwlk+l) Ji(S™") of Corollary 3.1 is called the generalized White-
head product.

Definition 3.3. Let p be a prime, and let S be a scheme over Z,). Say that a motivic space X is said
to be p-good if:

e X is P'-cellular and (2n, n)-connective;

e the p-localized homotopy group mam—1,m(X) =0 for 2m < 2p +n — 3.

Corollary 3.4. Let X € H(S) be a (2n,n)-connective p-good space. Let d = L%J Then any map
S2mm s X canonically extends to a map J4(S*™") — X.

Proof. Corollary 3.1 implies that the obstruction to extending $2™"™ — X to Jk(SZ"’”) lives in Tonk—1,nk(X).
Since X is p-good, mom—1,m(X) = 0 for 2m < 2p 4+ n — 3, so all these obstructions vanish. O

From now on, our base scheme will be C. I learned the following lemma and proposition in an email
from Aravind Asok (but errors introduced below are mine):

Lemma 3.5. Let ¢ : H?;ll Q2i+1 — SL, denote the morphism of [AFH19, Section 5.2]. If p is an
odd prime, and 2 < i < n — 1, then ma;,; of the morphism s; : Q2i—1 — SLj, induces an isomorphism
after p-localization. If i =n —1, and n is odd, then ma;; of s; is an isomorphism after p-localization on
C-points.

Proof. Recall that we work over C. First, note that since Qa;—; is A'-equivalent to A“tt — {0}, we
know that 7a; ;(Q2i—1) =2 ng,i(AiJrl —{0}) = KMW . Since (n — 1)! is invertible, the morphism ® is an
equivalence. Therefore, m2; ;Q2:—1 is a summand of ma; ;SLy,.

Suppose first that i +1 < n. Then, we know that m2; ;SL,, is in the stable range, i.e., is isomorphic to
the Nisnevich sheafification K? of the Quillen K-theory presheaf. It follows that 7, ; of the morphism
s; is KMW — K9 one can think of this as the map sending [a] € KM (k) to (a) € K& (k). Thus,
we need to show that the morphism KMV — K? is an isomorphism upon p-localization. This is a
consequence of [AF14a, Lemma 3.8 and Corollary 3.9].
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If i+ 1 =n and n is odd, then we can use the same argument. Namely, by [AF14a, Theorem 1],
there is an exact sequence
0— SQ — 7T2n_2,n_1SLn — KIQ — 07
where S, admits an epimorphism K37 /n! — So. Because K27(C) is divisible, we see that So(C) = 0,
and thus man—2,n,—15L, = KlQ(C), Thus, the morphism 72,—2 n—1Q2n—1 — Tan—2,n—15L, is the map
KMW(C) — K2(C), which is an isomorphism. O

Proposition 3.6. Let p be an odd prime. The motivic space BSLa over C is p-good.

Proof. We must show that m2m—1,m(BSL2)(C) = T2m,m(SL2)(C) = 0 for m < p. If p = 3, then we
must show that m42(SL2)(C) = 0. By [AF14b, Theorem 3|, we know that (using the notation from
the cited paper, albeit with different indexing on homotopy) m4,2(SL2)(C) 22 7r2Al (SL2)_2 is isomorphic
to an extension of (T4)_2 by (K57)_» = GWY,. The sheaf GW" | is 2-torsion, so vanishes upon
3-localization. Thus it remains to show that (T})_2 is 3-locally zero. But upon 3-localization, (T})_2
is the 3-torsion subsheaf of K37 /12, and K2/(C) is divisible.

We now consider the case p > 3. Suppose first that m < p — 1. By Lemma 3.5 with n = p, we see
that the morphism 72m,mQ2m—1 — T2m,mSLyp is an isomorphism after p-localization. This implies that
Tom,m Of the other summands in SL, ~ Hf;ll Q2i+1 is zero, i.e., that mom,mQ2i41 = 0 for ¢ #m — 1
and 1 < ¢ < p — 1. In particular, m2m,mQ@Q3 = Tom,mSL3s = 0 for m < p — 1. The same argument works
with m = p — 1 using that p is odd. O

Proof of Theorem 1.2. There is an equivalence S*? ~ SLo of motivic spaces. Indeed, by [ADF17,
Theorem 2], it suffices to note that SLy ~ Q3. There is therefore a map ¢ : 542 5 BS*2. We claim
that ¢ lifts to a map 7 : J,—1)/2(S*?) — BS®?. This follows from Corollary 3.4 (with n = 2) and our
assumption that BSL» is p-good (i.e., that maxi2.k41(S*?)(C) = 0 if k < p — 1). Finally, setting n = 4,
w=2,and k = (p —1)/2 in Corollary 3.1 produces a map S*+17+! J(p_l)/2(34’2). The composite

52p+1’p+1 — J(pfl)/2(54’2) — BSS’2

defines an element of 72y ,+1(S%2)(C). This recovers i € m2,(S*) upon realization, because it realizes
to the p-fold Whitehead product [¢, -+ ,t] € mopt1 (HP) (which is given by ai). O
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