
WHITEHEAD PRODUCTS

1. Introduction

The goal of this brief document is to study Whitehead products and provide some applications. Our
first general result is the following theorem.

Theorem 1.1. Let X be an ∞-category with universal pushouts. For any pointed X ∈ X, there is a
cofiber sequence

ΣnX∧n+1 → Jn(ΣX)→ Jn+1(ΣX)

which rotates to the cofiber sequence of [DH19, Proposition 4.26].

As an application of Theorem 1.1, we pave a path to a motivic construction of the α-family, and
hence to answering [AF17, Question 6] positively. We begin by introducing some terminology. If S is
a scheme, let H(S) be the ∞-category of motivic spaces over S. We let Sn,w denote the motivic space
Sn−w ∧G∧wm . We show:

Theorem 1.2 ([AF17, Question 6]). Let p > 2. Then there is an element α̃1 ∈ π2p,p+1(SL2)(C) whose
Betti realization is α1 ∈ π2p(S3).

2. Whitehead products

Recall from [DH19] that an ∞-category is said to have universal pushouts if it has finite limits and
pushouts, and the base-change of a pushout is still a pushout. The key tool is the following construction.

Construction 2.1. Let X be an ∞-category with finite limits and pushouts, and let f : X → A and
g : Y → B be two maps of pointed objects of X. Define cofib(f, g) ∈ X∗ via the pushout

A×B //

��

cofib(f)×B

��
A× cofib(g) // cofib(f, g).

Theorem 2.2. Let X be an ∞-category with universal pushouts, and let f : X → A and g : Y → B be
two maps of pointed objects of X. There is a cofiber sequence

Σ(X ∧ Y )→ cofib(f, g)→ cofib(f)× cofib(g).

Proof. We claim that it suffices to prove that if f : X → A and g : Y → B are two maps of pointed
objects of X, then there is a pushout square

(2.1) cofib(idX , g) //

��

cofib(f, g)

��
cofib(g) // cofib(f)× cofib(g).

Indeed, first note that cofib(idX , idY ) sits in a pushout square

X × Y //

��

X

��
Y // cofib(idX , idY ),
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so [DH19, Proposition 2.18] implies that cofib(idX , idY ) ' Σ(X ∧ Y ). Therefore, setting g = idY in
(2.1) produces a pushout square

(2.2) Σ(X ∧ Y ) //

��

cofib(f, idY )

��
∗ ' cofib(idY ) // cofib(f)× cofib(idY ) ' cofib(f).

Attaching (2.2) to (2.1) gives a diagram

Σ(X ∧ Y ) //

��

cofib(f, idY )

��

// cofib(f, g)

��
∗ ' cofib(idY ) // cofib(f)× cofib(idY ) ' cofib(f) // cofib(f)× cofib(g).

Both the left and right squares are pushouts, so the outer square is also a pushout; this is the desired
result.

We now prove that (2.1) is a pushout. Consider the diagram:

(2.3) X × cofib(g) //

��

cofib(idX , g) //

��

cofib(g)

��
A× cofib(g) // cofib(f, g) // cofib(f)× cofib(g),

where the rightmost square is (2.1). Since X has universal pushouts, the outermost square is a pushout.
To show that (2.1) is a pushout, it therefore suffices to show that the leftmost square of (2.3) is a
pushout. The leftmost square of (2.3) fits into the following diagram:

(2.4) X ×B //

��

X × cofib(g) //

��

A× cofib(g)

��
B // cofib(idX , g) // cofib(f, g).

The leftmost square is a pushout, by the definition of cofib(idX , g). To prove that the rightmost square
(which is the leftmost square of (2.3)) is a pushout, it therefore suffices to show that the outermost
square of (2.4) is a pushout. To prove this, consider the following diagram, where the outermost square
is the outermost square of (2.4):

X ×B

pr

��

f // A×B

��

// A× cofib(g)

��
B // cofib(f)×B // cofib(f, g).

Since X has universal pushouts, the leftmost square is a pushout. Moreover, the rightmost square is a
pushout by the definition of cofib(f, g); therefore, the outer square is a pushout, as desired. �

Proof of Theorem 1.1. We construct the map ΣnX∧n+1 → Jn(ΣX) by induction on n. When n = 0,
this is just the projection map X → ∗. For n ≥ 1, recall that there is a pushout square

ΣX × Jn−1(ΣX) tJn−1(ΣX) Jn(ΣX) //

��

Jn(ΣX)

��
ΣX × Jn(ΣX) // Jn+1(ΣX).

It therefore suffices to show that there is a cofiber sequence

ΣnX∧n+1 → ΣX × Jn−1(ΣX) tJn−1(ΣX) Jn(ΣX)→ ΣX × Jn(ΣX).
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We now apply Theorem 2.2 to the maps f : X → ∗ and g : Σn−1X∧n → Jn−1(ΣX) (where the
latter map comes from the inductive hypothesis). It is clear that cofib(f) ' ΣX, and the inductive
hypothesis gives cofib(g) ' ΣX × Jn(ΣX). To conclude, it therefore suffices to note that Construction
2.1 immediately yields an equivalence

cofib(f, g) ' ΣX × Jn−1(ΣX) tJn−1(ΣX) Jn(ΣX).

�

Remark 2.3. Let X be an ∞-category with universal pushouts, and let X,Y ∈ X be a pair of pointed
objects. By the Hilton-Milnor theorem of [DH19, Theorem 3.1], there is an equivalence

Ω(X ∨ Y ) ' ΩX × ΩY × ΩΣ(ΩX ∧ ΩY ).

In particular, there is a map

X ∧ Y → ΩΣX ∧ ΩΣY → ΩΣ(ΩX ∧ ΩY )→ ΩΣ(X ∨ Y ).

The adjoint to this map is the Whitehead product w : Σ(X ∧ Y ) → Σ(X ∨ Y ). It may equivalently
be viewed as the map Σ(X ∧ Y ) → cofib(f, g) from Theorem 2.2 applied to the maps f : X → ∗ and
g : Y → ∗.

3. Motivic α1

In this section, we prove Theorem 1.2. Recall that by [DH19, Example 2.3] (see also [Hoy17, Propo-
sition 3.15]), all small colimits are universal in H(S).

Corollary 3.1. Suppose n and w are integers such that n−w ≥ 1. Then for any scheme S, there is a
map Sn(k+1)−1,w(k+1) → Jk(Sn,w) in H(S) whose cofiber is equivalent to Jk+1(Sn,w).

Proof. Since n−w ≥ 1, the space Sn,w is a suspension. The claim is now an immediate consequence of
Corollary 1.1. �

Remark 3.2. The map Sn(k+1)−1,w(k+1) → Jk(Sn,w) of Corollary 3.1 is called the generalized White-
head product.

Definition 3.3. Let p be a prime, and let S be a scheme over Z(p). Say that a motivic space X is said
to be p-good if:

• X is P1-cellular and (2n, n)-connective;
• the p-localized homotopy group π2m−1,m(X) = 0 for 2m < 2p+ n− 3.

Corollary 3.4. Let X ∈ H(S) be a (2n, n)-connective p-good space. Let d =
⌊

2p+n−3
2n

⌋
. Then any map

S2n,n → X canonically extends to a map Jd(S2n,n)→ X.

Proof. Corollary 3.1 implies that the obstruction to extending S2n,n → X to Jk(S2n,n) lives in π2nk−1,nk(X).
Since X is p-good, π2m−1,m(X) = 0 for 2m < 2p+ n− 3, so all these obstructions vanish. �

From now on, our base scheme will be C. I learned the following lemma and proposition in an email
from Aravind Asok (but errors introduced below are mine):

Lemma 3.5. Let Φ :
∏n−1

i=1 Q2i+1 → SLn denote the morphism of [AFH19, Section 5.2]. If p is an
odd prime, and 2 < i < n − 1, then π2i,i of the morphism si : Q2i−1 → SLn induces an isomorphism
after p-localization. If i = n− 1, and n is odd, then π2i,i of si is an isomorphism after p-localization on
C-points.

Proof. Recall that we work over C. First, note that since Q2i−1 is A1-equivalent to Ai+1 − {0}, we
know that π2i,i(Q2i−1) ∼= π2i,i(A

i+1 − {0}) = KMW
1 . Since (n− 1)! is invertible, the morphism Φ is an

equivalence. Therefore, π2i,iQ2i−1 is a summand of π2i,iSLn.
Suppose first that i+1 < n. Then, we know that π2i,iSLn is in the stable range, i.e., is isomorphic to

the Nisnevich sheafification KQ
1 of the Quillen K-theory presheaf. It follows that π2i,i of the morphism

si is KMW
1 → KQ

1 ; one can think of this as the map sending [a] ∈ KMW
i (k) to (a) ∈ KQ

i (k). Thus,

we need to show that the morphism KMW
1 → KQ

1 is an isomorphism upon p-localization. This is a
consequence of [AF14a, Lemma 3.8 and Corollary 3.9].
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If i + 1 = n and n is odd, then we can use the same argument. Namely, by [AF14a, Theorem 1],
there is an exact sequence

0→ S2 → π2n−2,n−1SLn → KQ
1 → 0,

where S2 admits an epimorphism KM
2 /n! → S2. Because KM

2 (C) is divisible, we see that S2(C) = 0,

and thus π2n−2,n−1SLn
∼= KQ

1 (C). Thus, the morphism π2n−2,n−1Q2n−1 → π2n−2,n−1SLn is the map

KMW
1 (C)→ KQ

1 (C), which is an isomorphism. �

Proposition 3.6. Let p be an odd prime. The motivic space BSL2 over C is p-good.

Proof. We must show that π2m−1,m(BSL2)(C) = π2m,m(SL2)(C) = 0 for m < p. If p = 3, then we
must show that π4,2(SL2)(C) = 0. By [AF14b, Theorem 3], we know that (using the notation from

the cited paper, albeit with different indexing on homotopy) π4,2(SL2)(C) ∼= πA1

2 (SL2)−2 is isomorphic

to an extension of (T′4)−2 by (KSp
3 )−2

∼= GW0
−1. The sheaf GW0

−1 is 2-torsion, so vanishes upon
3-localization. Thus it remains to show that (T′4)−2 is 3-locally zero. But upon 3-localization, (T′4)−2

is the 3-torsion subsheaf of KM
2 /12, and KM

2 (C) is divisible.
We now consider the case p > 3. Suppose first that m < p − 1. By Lemma 3.5 with n = p, we see

that the morphism π2m,mQ2m−1 → π2m,mSLp is an isomorphism after p-localization. This implies that

π2m,m of the other summands in SLp '
∏p−1

i=1 Q2i+1 is zero, i.e., that π2m,mQ2i+1 = 0 for i 6= m − 1
and 1 < i < p− 1. In particular, π2m,mQ3 = π2m,mSL3 = 0 for m < p− 1. The same argument works
with m = p− 1 using that p is odd. �

Proof of Theorem 1.2. There is an equivalence S3,2 ' SL2 of motivic spaces. Indeed, by [ADF17,
Theorem 2], it suffices to note that SL2 ' Q3. There is therefore a map ι : S4,2 → BS3,2. We claim
that ι lifts to a map ι̃ : J(p−1)/2(S4,2) → BS3,2. This follows from Corollary 3.4 (with n = 2) and our

assumption that BSL2 is p-good (i.e., that π2k+2,k+1(S3,2)(C) = 0 if k < p− 1). Finally, setting n = 4,
w = 2, and k = (p− 1)/2 in Corollary 3.1 produces a map S2p+1,p+1 → J(p−1)/2(S4,2). The composite

S2p+1,p+1 → J(p−1)/2(S4,2)→ BS3,2

defines an element of π2p,p+1(S3,2)(C). This recovers α1 ∈ π2p(S3) upon realization, because it realizes
to the p-fold Whitehead product [ι, · · · , ι] ∈ π2p+1(HP∞) (which is given by α1). �

References

[ADF17] A. Asok, B. Doran, and J. Fasel. Smooth models of motivic spheres and the clutching construction. Int. Math.
Res. Not. IMRN, (6):1890–1925, 2017. (Cited on page 4.)

[AF14a] A. Asok and J. Fasel. Algebraic vector bundles on spheres. J. Topol., 7(3):894–926, 2014. (Cited on pages 3
and 4.)

[AF14b] A. Asok and J. Fasel. A cohomological classification of vector bundles on smooth affine threefolds. Duke Math.
J., 163(14):2561–2601, 2014. (Cited on page 4.)

[AF17] A. Asok and J. Fasel. Algebraic vs. topological vector bundles on spheres. J. Ramanujan Math. Soc., 32(3):201–
216, 2017. (Cited on page 1.)

[AFH19] A. Asok, J. Fasel, and M. Hopkins. Localization and nilpotent spaces in A1-homotopy theory. 2019. (Cited on
page 3.)

[Dev19] S. Devalapurkar. An approach to higher chromatic analogues of the Hopkins-Mahowald theorem, 2019. (Not
cited.)

[DH19] S. Devalapurkar and P. Haine. On the James and Hilton-Milnor Splittings, and the metastable EHP sequence.
https://arxiv.org/abs/1912.04130, 2019. (Cited on pages 1, 2, and 3.)

[Hoy17] M. Hoyois. The six operations in equivariant motivic homotopy theory. Adv. Math., 305:197–279, 2017. (Cited
on page 3.)

Email address: sdevalapurkar@math.harvard.edu

4

https://arxiv.org/abs/1912.04130

	1. Introduction
	2. Whitehead products
	3. Motivic 1
	References

