WHITEHEAD PRODUCTS

1. INTRODUCTION

The goal of this brief document is to study Whitehead products and provide some applications. Our first general result is the following theorem.

Theorem 1.1. Let \mathfrak{X} be an ∞ -category with universal pushouts. For any pointed $X \in \mathfrak{X}$, there is a cofiber sequence

$$\Sigma^n X^{\wedge n+1} \to J_n(\Sigma X) \to J_{n+1}(\Sigma X)$$

which rotates to the cofiber sequence of [DH19, Proposition 4.26].

As an application of Theorem 1.1, we pave a path to a motivic construction of the α -family, and hence to answering [AF17, Question 6] positively. We begin by introducing some terminology. If S is a scheme, let $\mathcal{H}(S)$ be the ∞ -category of motivic spaces over S. We let $S^{n,w}$ denote the motivic space $S^{n-w} \wedge \mathbb{G}_m^{\wedge w}$. We show:

Theorem 1.2 ([AF17, Question 6]). Let p > 2. Then there is an element $\tilde{\alpha}_1 \in \pi_{2p,p+1}(SL_2)(\mathbb{C})$ whose Betti realization is $\alpha_1 \in \pi_{2p}(S^3)$.

2. Whitehead products

Recall from [DH19] that an ∞ -category is said to have universal pushouts if it has finite limits and pushouts, and the base-change of a pushout is still a pushout. The key tool is the following construction.

Construction 2.1. Let \mathcal{X} be an ∞ -category with finite limits and pushouts, and let $f : X \to A$ and $g : Y \to B$ be two maps of pointed objects of \mathcal{X} . Define $\operatorname{cofib}(f, g) \in \mathcal{X}_*$ via the pushout

$$\begin{array}{c} A \times B \longrightarrow \operatorname{cofib}(f) \times B \\ & \downarrow \\ A \times \operatorname{cofib}(g) \longrightarrow \operatorname{cofib}(f,g). \end{array}$$

Theorem 2.2. Let \mathcal{X} be an ∞ -category with universal pushouts, and let $f : X \to A$ and $g : Y \to B$ be two maps of pointed objects of \mathcal{X} . There is a cofiber sequence

$$\Sigma(X \wedge Y) \to \operatorname{cofib}(f, g) \to \operatorname{cofib}(f) \times \operatorname{cofib}(g).$$

Proof. We claim that it suffices to prove that if $f: X \to A$ and $g: Y \to B$ are two maps of pointed objects of \mathfrak{X} , then there is a pushout square

Indeed, first note that $cofib(id_X, id_Y)$ sits in a pushout square

so [DH19, Proposition 2.18] implies that $\operatorname{cofib}(\operatorname{id}_X, \operatorname{id}_Y) \simeq \Sigma(X \wedge Y)$. Therefore, setting $g = \operatorname{id}_Y$ in (2.1) produces a pushout square

Attaching (2.2) to (2.1) gives a diagram

$$\begin{array}{c} \Sigma(X \wedge Y) & \longrightarrow \operatorname{cofib}(f, \operatorname{id}_Y) & \longrightarrow \operatorname{cofib}(f, g) \\ & \downarrow & & \downarrow \\ \ast \simeq \operatorname{cofib}(\operatorname{id}_Y) & \longrightarrow \operatorname{cofib}(f) \times \operatorname{cofib}(\operatorname{id}_Y) \simeq \operatorname{cofib}(f) & \longrightarrow \operatorname{cofib}(f) \times \operatorname{cofib}(g). \end{array}$$

Both the left and right squares are pushouts, so the outer square is also a pushout; this is the desired result.

We now prove that (2.1) is a pushout. Consider the diagram:

where the rightmost square is (2.1). Since \mathcal{X} has universal pushouts, the outermost square is a pushout. To show that (2.1) is a pushout, it therefore suffices to show that the leftmost square of (2.3) is a pushout. The leftmost square of (2.3) fits into the following diagram:

The leftmost square is a pushout, by the definition of $cofb(id_X, g)$. To prove that the rightmost square (which is the leftmost square of (2.3)) is a pushout, it therefore suffices to show that the outermost square of (2.4) is a pushout. To prove this, consider the following diagram, where the outermost square is the outermost square of (2.4):

$$\begin{array}{c|c} X \times B & \xrightarrow{f} & A \times B & \longrightarrow & A \times \operatorname{cofib}(g) \\ & & & \downarrow & & \downarrow \\ & & & \downarrow & & \downarrow \\ & & & B & \longrightarrow & \operatorname{cofib}(f) \times B & \longrightarrow & \operatorname{cofib}(f,g). \end{array}$$

Since \mathfrak{X} has universal pushouts, the leftmost square is a pushout. Moreover, the rightmost square is a pushout by the definition of $\operatorname{cofib}(f, g)$; therefore, the outer square is a pushout, as desired. \Box

Proof of Theorem 1.1. We construct the map $\Sigma^n X^{\wedge n+1} \to J_n(\Sigma X)$ by induction on n. When n = 0, this is just the projection map $X \to *$. For $n \ge 1$, recall that there is a pushout square

$$\begin{array}{c} \Sigma X \times J_{n-1}(\Sigma X) \sqcup_{J_{n-1}(\Sigma X)} J_n(\Sigma X) \longrightarrow J_n(\Sigma X) \\ & \downarrow \\ & \downarrow \\ \Sigma X \times J_n(\Sigma X) \longrightarrow J_{n+1}(\Sigma X). \end{array}$$

It therefore suffices to show that there is a cofiber sequence

$$\Sigma^n X^{\wedge n+1} \to \Sigma X \times J_{n-1}(\Sigma X) \sqcup_{J_{n-1}(\Sigma X)} J_n(\Sigma X) \to \Sigma X \times J_n(\Sigma X).$$

We now apply Theorem 2.2 to the maps $f : X \to *$ and $g : \Sigma^{n-1}X^{\wedge n} \to J_{n-1}(\Sigma X)$ (where the latter map comes from the inductive hypothesis). It is clear that $\operatorname{cofib}(f) \simeq \Sigma X$, and the inductive hypothesis gives $\operatorname{cofib}(g) \simeq \Sigma X \times J_n(\Sigma X)$. To conclude, it therefore suffices to note that Construction 2.1 immediately yields an equivalence

$$\operatorname{cofib}(f,g) \simeq \Sigma X \times J_{n-1}(\Sigma X) \sqcup_{J_{n-1}(\Sigma X)} J_n(\Sigma X).$$

Remark 2.3. Let \mathfrak{X} be an ∞ -category with universal pushouts, and let $X, Y \in \mathfrak{X}$ be a pair of pointed objects. By the Hilton-Milnor theorem of [DH19, Theorem 3.1], there is an equivalence

 $\Omega(X \lor Y) \simeq \Omega X \times \Omega Y \times \Omega \Sigma(\Omega X \land \Omega Y).$

In particular, there is a map

$$X \land Y \to \Omega \Sigma X \land \Omega \Sigma Y \to \Omega \Sigma (\Omega X \land \Omega Y) \to \Omega \Sigma (X \lor Y)$$

The adjoint to this map is the Whitehead product $w : \Sigma(X \land Y) \to \Sigma(X \lor Y)$. It may equivalently be viewed as the map $\Sigma(X \land Y) \to \operatorname{cofib}(f,g)$ from Theorem 2.2 applied to the maps $f : X \to *$ and $g : Y \to *$.

3. Motivic α_1

In this section, we prove Theorem 1.2. Recall that by [DH19, Example 2.3] (see also [Hoy17, Proposition 3.15]), all small colimits are universal in H(S).

Corollary 3.1. Suppose n and w are integers such that $n - w \ge 1$. Then for any scheme S, there is a map $S^{n(k+1)-1,w(k+1)} \to J_k(S^{n,w})$ in H(S) whose cofiber is equivalent to $J_{k+1}(S^{n,w})$.

Proof. Since $n - w \ge 1$, the space $S^{n,w}$ is a suspension. The claim is now an immediate consequence of Corollary 1.1.

Remark 3.2. The map $S^{n(k+1)-1,w(k+1)} \to J_k(S^{n,w})$ of Corollary 3.1 is called the *generalized White-head product*.

Definition 3.3. Let p be a prime, and let S be a scheme over $\mathbf{Z}_{(p)}$. Say that a motivic space X is said to be p-good if:

- X is \mathbf{P}^1 -cellular and (2n, n)-connective;
- the *p*-localized homotopy group $\pi_{2m-1,m}(X) = 0$ for 2m < 2p + n 3.

Corollary 3.4. Let $X \in H(S)$ be a (2n, n)-connective p-good space. Let $d = \lfloor \frac{2p+n-3}{2n} \rfloor$. Then any map $S^{2n,n} \to X$ canonically extends to a map $J_d(S^{2n,n}) \to X$.

Proof. Corollary 3.1 implies that the obstruction to extending $S^{2n,n} \to X$ to $J_k(S^{2n,n})$ lives in $\pi_{2nk-1,nk}(X)$. Since X is p-good, $\pi_{2m-1,m}(X) = 0$ for 2m < 2p + n - 3, so all these obstructions vanish. \Box

From now on, our base scheme will be C. I learned the following lemma and proposition in an email from Aravind Asok (but errors introduced below are mine):

Lemma 3.5. Let $\Phi : \prod_{i=1}^{n-1} Q_{2i+1} \to SL_n$ denote the morphism of [AFH19, Section 5.2]. If p is an odd prime, and 2 < i < n-1, then $\pi_{2i,i}$ of the morphism $s_i : Q_{2i-1} \to SL_n$ induces an isomorphism after p-localization. If i = n-1, and n is odd, then $\pi_{2i,i}$ of s_i is an isomorphism after p-localization on \mathbf{C} -points.

Proof. Recall that we work over **C**. First, note that since Q_{2i-1} is \mathbf{A}^1 -equivalent to $\mathbf{A}^{i+1} - \{0\}$, we know that $\pi_{2i,i}(Q_{2i-1}) \cong \pi_{2i,i}(\mathbf{A}^{i+1} - \{0\}) = \mathbf{K}_1^{MW}$. Since (n-1)! is invertible, the morphism Φ is an equivalence. Therefore, $\pi_{2i,i}Q_{2i-1}$ is a summand of $\pi_{2i,i}SL_n$.

Suppose first that i + 1 < n. Then, we know that $\pi_{2i,i}SL_n$ is in the stable range, i.e., is isomorphic to the Nisnevich sheafification \mathbf{K}_1^Q of the Quillen K-theory presheaf. It follows that $\pi_{2i,i}$ of the morphism s_i is $\mathbf{K}_1^{MW} \to \mathbf{K}_1^Q$; one can think of this as the map sending $[a] \in K_i^{MW}(k)$ to $(a) \in K_i^Q(k)$. Thus, we need to show that the morphism $\mathbf{K}_1^{MW} \to \mathbf{K}_1^Q$ is an isomorphism upon *p*-localization. This is a consequence of [AF14a, Lemma 3.8 and Corollary 3.9]. If i + 1 = n and n is odd, then we can use the same argument. Namely, by [AF14a, Theorem 1], there is an exact sequence

$$0 \to \mathbf{S}_2 \to \pi_{2n-2,n-1} \mathrm{SL}_n \to \mathbf{K}_1^Q \to 0,$$

where \mathbf{S}_2 admits an epimorphism $\mathbf{K}_2^M/n! \to \mathbf{S}_2$. Because $K_2^M(\mathbf{C})$ is divisible, we see that $S_2(\mathbf{C}) = 0$, and thus $\pi_{2n-2,n-1}\mathrm{SL}_n \cong K_1^Q(\mathbf{C})$. Thus, the morphism $\pi_{2n-2,n-1}Q_{2n-1} \to \pi_{2n-2,n-1}\mathrm{SL}_n$ is the map $K_1^{MW}(\mathbf{C}) \to K_1^Q(\mathbf{C})$, which is an isomorphism.

Proposition 3.6. Let p be an odd prime. The motivic space BSL₂ over C is p-good.

Proof. We must show that $\pi_{2m-1,m}(BSL_2)(\mathbf{C}) = \pi_{2m,m}(SL_2)(\mathbf{C}) = 0$ for m < p. If p = 3, then we must show that $\pi_{4,2}(SL_2)(\mathbf{C}) = 0$. By [AF14b, Theorem 3], we know that (using the notation from the cited paper, albeit with different indexing on homotopy) $\pi_{4,2}(SL_2)(\mathbf{C}) \cong \pi_2^{\mathbf{A}^1}(SL_2)_{-2}$ is isomorphic to an extension of $(\mathbf{T}'_4)_{-2}$ by $(\mathbf{K}_3^{Sp})_{-2} \cong \mathbf{GW}_{-1}^0$. The sheaf \mathbf{GW}_{-1}^0 is 2-torsion, so vanishes upon 3-localization. Thus it remains to show that $(\mathbf{T}'_4)_{-2}$ is 3-locally zero. But upon 3-localization, $(\mathbf{T}'_4)_{-2}$ is the 3-torsion subsheaf of $\mathbf{K}_2^M/12$, and $\mathbf{K}_2^M(\mathbf{C})$ is divisible.

We now consider the case p > 3. Suppose first that m . By Lemma 3.5 with <math>n = p, we see that the morphism $\pi_{2m,m}Q_{2m-1} \to \pi_{2m,m}\mathrm{SL}_p$ is an isomorphism after *p*-localization. This implies that $\pi_{2m,m}$ of the other summands in $\mathrm{SL}_p \simeq \prod_{i=1}^{p-1} Q_{2i+1}$ is zero, i.e., that $\pi_{2m,m}Q_{2i+1} = 0$ for $i \neq m-1$ and 1 < i < p-1. In particular, $\pi_{2m,m}Q_3 = \pi_{2m,m}\mathrm{SL}_3 = 0$ for m < p-1. The same argument works with m = p - 1 using that p is odd.

Proof of Theorem 1.2. There is an equivalence $S^{3,2} \simeq SL_2$ of motivic spaces. Indeed, by [ADF17, Theorem 2], it suffices to note that $SL_2 \simeq Q_3$. There is therefore a map $\iota : S^{4,2} \to BS^{3,2}$. We claim that ι lifts to a map $\tilde{\iota} : J_{(p-1)/2}(S^{4,2}) \to BS^{3,2}$. This follows from Corollary 3.4 (with n = 2) and our assumption that BSL₂ is p-good (i.e., that $\pi_{2k+2,k+1}(S^{3,2})(\mathbf{C}) = 0$ if k < p-1). Finally, setting n = 4, w = 2, and k = (p-1)/2 in Corollary 3.1 produces a map $S^{2p+1,p+1} \to J_{(p-1)/2}(S^{4,2})$. The composite

$$S^{2p+1,p+1} \to J_{(p-1)/2}(S^{4,2}) \to BS^{3,2}$$

defines an element of $\pi_{2p,p+1}(S^{3,2})(\mathbf{C})$. This recovers $\alpha_1 \in \pi_{2p}(S^3)$ upon realization, because it realizes to the *p*-fold Whitehead product $[\iota, \cdots, \iota] \in \pi_{2p+1}(\mathbf{H}P^{\infty})$ (which is given by α_1).

References

- [ADF17] A. Asok, B. Doran, and J. Fasel. Smooth models of motivic spheres and the clutching construction. Int. Math. Res. Not. IMRN, (6):1890–1925, 2017. (Cited on page 4.)
- [AF14a] A. Asok and J. Fasel. Algebraic vector bundles on spheres. J. Topol., 7(3):894–926, 2014. (Cited on pages 3 and 4.)
- [AF14b] A. Asok and J. Fasel. A cohomological classification of vector bundles on smooth affine threefolds. Duke Math. J., 163(14):2561–2601, 2014. (Cited on page 4.)
- [AF17] A. Asok and J. Fasel. Algebraic vs. topological vector bundles on spheres. J. Ramanujan Math. Soc., 32(3):201– 216, 2017. (Cited on page 1.)
- [AFH19] A. Asok, J. Fasel, and M. Hopkins. Localization and nilpotent spaces in A¹-homotopy theory. 2019. (Cited on page 3.)
- [Dev19] S. Devalapurkar. An approach to higher chromatic analogues of the Hopkins-Mahowald theorem, 2019. (Not cited.)
- [DH19] S. Devalapurkar and P. Haine. On the James and Hilton-Milnor Splittings, and the metastable EHP sequence. https://arxiv.org/abs/1912.04130, 2019. (Cited on pages 1, 2, and 3.)
- [Hoy17] M. Hoyois. The six operations in equivariant motivic homotopy theory. Adv. Math., 305:197–279, 2017. (Cited on page 3.)

 $Email \ address: \verb"sdevalapurkar@math.harvard.edu"$