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Abstract. We show that the map π∗MString → π∗tmf induced by the Ando-
Hopkins-Rezk orientation is surjective. This proves an unpublished claim of
Hopkins and Mahowald. We do so by constructing an E1-ring B and a map
B → MString such that the composite B → MString → tmf is surjective on
homotopy. Applications to differential topology, and in particular to Hirze-
bruch’s prize question, are discussed.

1. Introduction

The goal of this paper is to show the following result due to Hopkins and
Mahowald.

Theorem 1.1 (Hopkins-Mahowald). The map π∗MString → π∗tmf induced by
the Ando-Hopkins-Rezk orientation is surjective.

This integral result was originally stated as [Hop02, Theorem 6.25], but, to
the best of our knowledge, no proof has appeared in the literature. In [HM02],
Hopkins and Mahowald give a proof sketch of Theorem 1.1 for elements of π∗tmf
of Adams-Novikov filtration 0.

The analogue of Theorem 1.1 for bo (namely, the statement that the map
π∗MSpin → π∗bo induced by the Atiyah-Bott-Shapiro orientation is surjective) is
classical [Mil63]. In Section 2, we present (as a warmup) a proof of this surjectivity
result for bo via a technique which generalizes to prove Theorem 1.1. We construct
an E1-ring A with an E1-map A → MSpin. The E1-ring A is a particular E1-
Thom spectrum whose mod 2 homology is given by the polynomial subalgebra
F2[ζ

4
1 ] of the mod 2 dual Steenrod algebra. The Atiyah-Bott-Shapiro orientation

MSpin → bo is an E∞-map, and so the composite A → MSpin → bo is an E1-map.
We then prove that the map π∗A → π∗bo is surjective; this is stronger than the
Atiyah-Bott-Shapiro orientation being surjective on homotopy.

The argument to prove Theorem 1.1 follows the same outline: we construct
(in Section 3) an E1-ring B with an E1-map B → MString. This E1-ring B is
the height 2 analogue of the E1-ring A; this motivated the naming of B. We
define B as a particular E1-Thom spectrum whose mod 2 homology is given by
the polynomial subalgebra F2[ζ

8
1 , ζ

4
2 ] of the mod 2 dual Steenrod algebra. The

Ando-Hopkins-Rezk orientation [AHR10] MString → tmf is an E∞-map, and so
the composite B → MString → tmf is an E1-map. We then prove the following
stronger statement:
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Theorem 1.2. The map π∗B → π∗tmf is surjective.

The map B → tmf factors through MString, so Theorem 1.1 follows. In Section
4, we prove Theorem 1.2 after localizing at 3 (as Theorem 4.1). In Section 5, we
prove Theorem 1.2 after localizing at 2 (as Theorem 5.1); together, these yield
Theorem 1.1 by Corollary 3.6. Finally, in Section 6, we study some applications
of Theorem 1.1. In particular, we discuss Hirzebruch’s prize question [HBJ92,
Page 86] along the lines of [Hop02, Corollary 6.26]. We also prove a conjecture of
Baker’s from [Bak17].

The surjectivity of the Atiyah-Bott-Shapiro orientation MSpin → bo was con-
siderably strengthened by Anderson, Brown, and Peterson in [ABP67]: they
showed that the Atiyah-Bott-Shapiro orientation MSpin → bo in fact admits a
spectrum-level splitting. It is a folklore conjecture that the same is true of the
Ando-Hopkins-Rezk orientation MString → tmf, and there have been multiple in-
vestigations in this direction (see, for instance, [Lau04, LS19]). In forthcoming
work [Dev20], we study in detail the relationship between B and tmf (as well as A
and bo). We show that old conjectures of Cohen, Moore, Neisendorfer, Gray, and
Mahowald in unstable homotopy theory related to the Cohen-Moore-Neisendorfer
theorem, coupled with a conjecture about the centrality of a certain element of
σ2 ∈ π13(B) (resp. σ1 ∈ π5(A)), implies that the Ando-Hopkins-Rezk orientation
(resp. the Atiyah-Bott-Shapiro orientation) admits a spectrum level splitting. This
provides another proof of Theorem 1.1, assuming the truth of these conjectures.
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2. Warmup: surjectivity of the Atiyah-Bott-Shapiro orientation

The goal of this section is to provide a proof of the following classical theorem
using techniques which generalize to prove Theorem 1.1.

Theorem 2.1. The map π∗MSpin → π∗bo induced by the Atiyah-Bott-Shapiro
orientation is surjective.

As mentioned in the introduction, we prove Theorem 2.1 by constructing an
E1-ring A with an E1-map A → MSpin. Composing with the Atiyah-Bott-Shapiro
orientation MSpin → bo produces an E1-map A → MSpin → bo. We then show
the following result, which implies Theorem 2.1.

Theorem 2.2. The map π∗A → π∗bo is surjective.
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Figure 1. The 15-skeleton of A at the prime 2 shown horizontally,
with 0-cell on the left. The element σ1 is depicted.

Remark 2.3. Theorem 2.2 is an old result of Mahowald’s: it appears, for in-
stance, as [Mah78, Proposition 4.1(c)] and [HM02, Proposition 2.2(3)]. Theorem
2.2 also implies the second part of [Bak18, Proposition 4.10].

The definition of the E1-ring A is as follows.

Construction 2.4. Let S4 → BSpin be a generator of π4BSpin ∼= Z. Since
BSpin is an infinite loop space, there is an induced map ΩS5 → BSpin. Let A denote
the Thom spectrum of this map. This is an E1-ring with an E1-map A → MSpin.
Its 15-skeleton is shown in Figure 1.

Remark 2.5. The image of a generator of π4BSpin under the J-homomorphism
BSpin → BGL1(S) is the Hopf element ν ∈ π4BGL1(S) ∼= π3S. Consequently, A is
the Thom spectrum of the map ΩS5 → BGL1(S) which detects ν on the bottom
cell S4 of the source. In particular, the universal property of Thom spectra from
[AB19] exhibits A as the E1-quotient S//ν of the sphere spectrum by ν.

Remark 2.6. The spectrum A is ubiquitous in Mahowald’s older works [Mah79,
Mah81, Mah82] (where it is often denoted X5), where its relationship to bo via
the composite A → MSpin → bo is utilized to great effect.

Proposition 2.7. The BP∗-algebra BP∗(A) is isomorphic to a polynomial al-
gebra BP∗[y2], where |y2| = 4. There is a map A(p) → BP. On BP-homology, the
element y2 maps to t21 mod decomposables at p = 2.

Proof. The space ΩS5 has cells only in dimensions divisible by 4, and hence
the same is true of A. The Atiyah-Hirzebruch spectral sequence for BP∗(A) there-
fore collapses at the E2-page, and so BP∗(A) ∼= BP∗[y2], as desired. Since π∗BP is
concentrated in even degrees, the element ν vanishes in π3BP. The universal prop-
erty of A from Remark 2.5 therefore produces an E1-map A → BP. The element
ν is detected by [t21] in the 2-local Adams-Novikov spectral sequence for the sphere
(in fact, a choice of representative in the cobar complex is t21 + v1t1), so this yields
the final sentence of the proposition. □

Remark 2.8. In particular, the map A → bo is an equivalence in dimensions
≤ 4. Proposition 2.7 implies that H∗(A;F2) ∼= F2[ζ

4
1 ]; note that this is the Q0-

Margolis homology of H∗(bo;F2) ∼= F2[ζ
4
1 , ζ

2
2 , ζ3, · · · ]. This is sharp: π5A contains

a nontrivial element σ1 which maps to zero in π∗bo. This element is specified up
to indeterminacy by the relation ην = 0; see Figure 1.

We will momentarily prove Theorem 2.2. Before doing so, we need to introduce
one piece of notation.

Notation. Let M be a unital spectrum, and suppose α, β ∈ π∗S and γ ∈ π∗M
are elements such that αβ = 0 and βγ = 0 in M . Following [BM04, Section
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7], the Toda bracket ⟨α, β, γ⟩ will denote the coset of elements of π|α|+|β|+|γ|+1(M)
determined by the subgroup indet = απ|β|+|γ|+1(M)+π|α|+|β|+1(S)γ. The subgroup
indet is the indeterminacy of the bracket ⟨α, β, γ⟩. There is an analogous definition
for higher-fold Toda brackets, but we will not elaborate more on this, since we shall
not need it. We will use this notation throughout without further comment.

Proof of Theorem 2.2. Because the map A → bo is one of E1-rings, it
suffices to lift all the generators of π∗bo to π∗A. We first prove Theorem 2.2 after
inverting 2. Since π∗bo[1/2] ∼= Z[1/2][u2], where u2 is the square of the Bott
element. It follows from Remark 2.8 that the polynomial generator u2 of π∗bo[1/2]
lifts to π∗A[1/2].

It remains to prove Theorem 2.2 after 2-localization. Recall that π∗bo is poly-
nomially generated by η in degree 1 (which is spherical), 2v21 in degree 4, and v41
in degree 8 (subject to some relations). The element η ∈ π1bo(2) lifts to π1A(2)

because it is a spherical element and the unit S → bo(2) factors through A(2). It
remains to lift the other two generators. Remark 2.8 already shows that 2v21 lifts
to π∗A(2). Alternatively, recall that there is a sole d3-differential d3(v21) = η3 in
the Adams-Novikov spectral sequence for bo. This implies that 2v21 ∈ ⟨8, ν, 1bo⟩,
with indeterminacy 0 (mod 2). Since ν vanishes in π∗A, we find that the bracket
⟨8, ν, 1A⟩ is well-defined in π4A(2).

For v41 , recall that σ = 0 in π∗bo, and that v41 ∈ ⟨16, σ, 1bo⟩ ⊆ π∗bo (see
[BM04, Lemma 7.3]), where the indeterminacy in this bracket is 0 (mod 2). Note
that ⟨16, σ, 1bo⟩ ⊆ ⟨4, 4σ, 1bo⟩. We now observe that the attaching map of the 8-cell
of A(2) is given by σ + 2̃ν, where 2̃ν ∈ π7(Cν) is an element determined by the
relation 2ν2 = 0 ∈ π6(S); see, for instance, [Bak18, Lemma 4.7]. In particular, this
implies that 4σ = 0 in π∗A(2), so the bracket ⟨4, 4σ, 1A⟩ is well-defined.

It follows from the above discussion that 2v21 and v41 lift to π∗A(2) up to indeter-
minacy (and the indeterminacy in π∗bo is 0 (mod 2)). If 2v21 +4nv21 = 2(2n+1)v21
lifts to π∗A(2) for some n ∈ Z(2), then so does 2v21 since 2n + 1 is a 2-local unit.
Arguing similarly for v41 , it follows that the other two generators of π∗bo(2) lift to
π∗A(2), as desired. □

3. Defining B

In this section, we will define the E1-ring B mentioned in the introduction and
study some of its elementary properties. It is the height 2 analogue of the spectrum
A from Section 2. We define B as a Thom spectrum whose mod 2 homology is given
by F2[ζ

8
1 , ζ

4
2 ]; notice that this is the Q0-Margolis homology of the mod 2 homology

of tmf. The spectrum B appeared under the name X in [HM02, Section 10]. We
will work integrally (i.e., without inverting any primes) unless explicitly mentioned
otherwise.

Construction 3.1. There is a fiber sequence

S9 = O(10)/O(9) → BO(9) → BO(10).

There is an element f ∈ π12O(10) ∼= Z/12, which is sent to 2ν ∈ π12(S
9) ∼= Z/24

under the boundary homomorphism in the long exact sequence on homotopy. Define
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a space BN as the homotopy pullback

S9 // BN //

��

S13

f

��
S9 // BO(9) // BO(10).

Let N be the loop space ΩBN . If S9 → B2String denotes the generator of
π8BString, then the composite S12 2ν−→ S9 → B2String is null. The Atiyah-
Hirzebruch-Serre spectral sequence shows that the generator of bstring1(S9) ex-
tends to bstring1(BN), and so there is a map BN → B2String. The induced loop
map N → BString is given by the map of fiber sequences

(1) N //

��

ΩS13 //

��

S9

��
BString // ∗ // B2String.

The Thom spectrum of the map N → BString is the E1-ring B.

Note that B is defined integrally, and that it admits an E1-map B → MString
obtained by Thomifying the map N → BString.

Proposition 3.2. The BP∗-algebra BP∗(B) is isomorphic to a polynomial
algebra BP∗[b4, y6], where |b4| = 8 and |y6| = 12. There is a map B(p) → BP. On
BP-homology, the elements b4 and y6 map to t41 and t22 mod decomposables at p = 2,
and y6 maps to t31 mod decomposables at p = 3.

Proof. There is a fiber sequence

(2) ΩS9 → N → ΩS13.

The J-homomorphism BString → BGL1(S) gives a map N → BString → BGL1(S).
The composite with the map ΩS9 → N gives a map ΩS9 → BGL1(S). This is the
extension of the map S8 → BGL1(S) detecting σ ∈ π7(S) along S8 → ΩS9. By
one of the main theorems of [AB19], we find that the Thom spectrum of the map
ΩS9 → BGL1(S) is the E1-quotient S//σ of the sphere spectrum by σ.

The fiber sequence (2) exhibits B as the Thom spectrum of a map ΩS13 →
BGL1(S//σ). The induced map S12 → BGL1(S//σ) detects an element ν̃ ∈ π11(S//σ).
This element may be described as follows. The relation σν = 0 in π∗S defines a lift
of ν ∈ π3(S) to π11 of the 15-skeleton Cσ of S//σ; this is the element ν̃. Since BP is
concentrated in even degrees, the element σ vanishes in π∗BP. Consequently, ν̃ is
well-defined, and it, too vanishes in π∗BP. The universal property of Thom spectra
from [AB19] then supplies an E1-map B → BP.

In particular, the Thom isomorphism says that the BP-homology of B is ab-
stractly isomorphic as an algebra to the BP-homology of N . This may in turn be
computed by the Atiyah-Hirzebruch spectral sequence. However, the fiber sequence
(2) implies that the homology of N is concentrated in even degrees. Since π∗BP is
also concentrated in even degrees, this implies that the Atiyah-Hirzebruch spectral
sequence calculating BP∗(B) collapses, and we find that BP∗(B) ∼= BP∗[b4, y6], as
desired.

The map B → BP induces a map BP∗(B) → BP∗(BP) ∼= BP∗[t1, t2, · · · ].
The element ν̃ is detected by [t22] in the 2-local Adams-Novikov spectral sequence
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for S//σ, and by [t31] in the 3-local Adams-Novikov spectral sequence for S//σ. The
element σ ∈ π7(S) is detected by [t41] in the 2-local Adams-Novikov spectral sequence
for the sphere. This yields the final sentence of the proposition. □

Remark 3.3. Proposition 3.2 implies that the mod 2 homology of B is iso-
morphic to F2[ζ

8
1 , ζ

4
2 ]; note that this is the Q0-Margolis homology of H∗(tmf;F2) ∼=

F2[ζ
8
1 , ζ

4
2 , ζ

2
3 , ζ4, · · · ].

Remark 3.4. The composite B → MString → tmf is an E1-ring map (since
the first map is an E1-ring map by construction, and the second is an E∞-ring
map by [AHR10]), and it is an equivalence in dimensions ≤ 12. This follows from
Proposition 3.2.

Proposition 3.5. The map B → tmf induces a surjection on homotopy after
inverting 6.

Proof. By [Bau08, Proposition 4.4], π∗tmf[1/6] is a polynomial generator
on two generators c4 and c6, in degrees 8 and 12, respectively. Since the map
B[1/6] → tmf[1/6] is an E1-map, the map π∗B[1/6] → π∗tmf[1/6] is a ring map.
It therefore suffices to lift the elements c4 and c6 to π∗B[1/6]. This follows from
Remark 3.4. □

As an immediate consequence, we have:

Corollary 3.6. If the maps π∗B(3) → π∗tmf(3) and π∗B(2) → π∗tmf(2) are
surjective, then Theorem 1.2 is true.

Remark 3.7. In [Dev20], we show that B is in many ways analogous to tmf.
For instance, it satisfies an analogue of the 2-local Wood equivalence tmf(2)∧DA1 ≃
tmf1(3)(2) from [Mat16], where DA1 is a certain 8-cell complex: the spectrum
B(2)∧DA1 is a summand of Ravenel’s Thom spectrum X(4)(2). (More precisely, it
is the summand T (2) of X(4)(2) obtained from the Quillen idempotent, as studied
in [Rav86, Chapter 6.5].)

4. Theorem 1.2 after localizing at 3

In Corollary 3.6, we reduced Theorem 1.2 to showing that the maps π∗B(3) →
π∗tmf(3) and π∗B(2) → π∗tmf(2) are surjective. Our goal in this section is to study
the 3-local case. We shall prove:

Theorem 4.1. The map π∗B(3) → π∗tmf(3) is surjective on homotopy.

Convention 4.2. We shall localize at the prime 3 for the remainder of this
section.

4.1. The Adams-Novikov spectral sequence for tmf. In this section, we
review the Adams-Novikov spectral sequence for tmf at p = 3; as mentioned in
Convention 4.2, we shall 3-localize everywhere. The following result is well-known,
and is proved in [Bau08]:

Theorem 4.3. The E2-page of the descent spectral sequence (isomorphic to the
Adams-Novikov spectral sequence) for tmf is

H∗(Mell;ω
⊗2∗) ∼= Z3[α, β, c4, c6,∆

±1]/I,
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where I is the ideal generated by the relations

3α = 3β = 0, α2 = 0, αc4 = βc4 = αc6 = βc6 = 0, c34 − c36 = 1728∆.

Moreover, α and β are in the image of the map of spectral sequences from the
Adams-Novikov spectral sequence of the sphere to that of tmf, with preimages α1

and β1.

The differentials are all deduced from Toda’s relation α1β
3
1 = 0 in π∗S. There

is a d5-differential d5(β3/3) = α1β
3
1 (the “Toda differential”), where β3/3 lives in

bidegree (t−s, s) = (34, 2); see, e.g., [Rav86, Theorem 4.4.22]. Under the E∞-ring
map S → tmf, this pushes forward to the same differential in the Adams-Novikov
spectral sequence for tmf. Then:

Lemma 4.4. There is a relation β3/3 = ∆β in the E2-page of the Adams-
Novikov spectral sequence for tmf.

Proof. We explain how to deduce this from the literature. Multiplication by α
is an isomorphism in the Adams-Novikov spectral sequence for both the sphere and
tmf in stem 34, so it suffices to check that αβ3/3 = ∆αβ. The class α1β3/3 (resp.
∆αβ) is a permanent cycle in the Adams-Novikov spectral sequence of the sphere
(resp. tmf) by the discussion on [Rav86, Page 137]. It is known (see [DFHH14,
Chapter 13, page 12]) that ∆αβ detects α1β3/3 in homotopy. To conclude that
they are the same on the E2-page of the Adams-Novikov spectral sequence for tmf,
it suffices to note that α1β3/3 maps to (a unit multiple of) ∆αβ, as desired. □

It follows by naturality that there is a d5-differential d5(∆β) = αβ3, which
gives (by β-linearity):

Proposition 4.5. In the Adams-Novikov spectral sequence for tmf, there is a
d5-differential d5(∆) = αβ2.

Since 3α = 0 in the Adams-Novikov spectral sequence of tmf, we must have
d5(3∆) = 3αβ2 = 0. There are no other possibilities for differentials on 3∆, so it is a
permanent cycle. Proposition 4.5 shows that there is a Toda bracket 3∆ ∈ ⟨3, α, β2⟩
in π∗tmf. This can be expressed by the claim that 3∆ can be expressed a composite

S24 → Σ20Cα1
β2

−→ tmf,

where the first map is of degree 3 on the top cell.
By ∆-linearity, there is also a d5-differential d5(∆2) = αβ2∆, so 3∆2 lives in

the E6-page. There are no further possibilities for differentials, so 3∆2 lives in
π∗tmf. Again, this shows that 3∆2 ∈ ⟨3,∆α, β2⟩. Finally, we turn to ∆3. We have
d5(∆

3) = 3∆2αβ2, so we find that ∆3 ∈ ⟨3,∆2α, β2⟩. We collect our conclusions
in the following:

Corollary 4.6. The following is true in π∗tmf:
• 3∆ ∈ ⟨3, α, β2⟩;
• 3∆2 ∈ ⟨3,∆α, β2⟩
• ∆3 ∈ ⟨3,∆2α, β2⟩.

Remark 4.7. The indeterminacy of the above Toda brackets in π∗tmf(3) are
3Z(3){3∆}, 3Z(3){3∆2}, and 3Z(3){∆3}, respectively.
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4.2. The Adams-Novikov spectral sequence for B. In this section, we
analyze the ring map B → tmf, and show that the generators of π∗tmf(3) lift to
π∗B(3). By Corollary 3.6, this implies Theorem 4.1. We begin by showing:

Proposition 4.8. There is an element in the E2-page of the Adams-Novikov
spectral sequence for B which lifts the element ∆ in the E2-page of the Adams-
Novikov spectral sequence for tmf.

Proof. To prove the proposition, we begin by recalling the definition of a rep-
resentative for the element ∆ in the cobar complex computing the E2-page of the
Adams-Novikov spectral sequence for tmf. The Hopf algebroid (BP∗tmf,BP∗BP⊗BP∗

BP∗tmf) is isomorphic to the elliptic curve Hopf algebroid (A,Γ) presenting the
moduli stack of cubic curves by [Mat16, Corollary 5.3]. Recall from [Bau08, Page
16] (or [Sil86, Section III.1]) that for an elliptic curve in Weierstrass form

(3) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

we can define quantities

b2 = a21+4a2, b4 = 2a4+a1a3, b6 = a23+4a6, b8 = a21a6+4a2a6−a1a3a4+a2a
2
3−a24,

which allows us to define elements

c4 = b22 − 24b4, c6 = −b32 + 36b2b4 − 216b6.

The discriminant is

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6.

Now, it is known that upon inverting 2, every elliptic curve in Weierstrass form (3)
is isomorphic to one of the form

(4) y2 = x3 + a2x
2 + a4x.

It follows that the elliptic curve Hopf algebroid is isomorphic to a Hopf algebroid
of the form (A′,Γ′) = (Z[1/2][a2, a4], A

′[r]/(r3+a2r
2+a4r)), where I is some ideal

consisting of complicated relations, and where the Hopf algebroid structure can be
written down explicitly (as in [Bau08, Section 3]). A straightforward calculation
proves that the discriminant is then

(5) ∆ = a22b
2
4 − 16b34.

Turning to B, recall that BP∗B ∼= BP∗[b4, y6]. The map (BP∗B,BP∗BP ⊗BP∗

BP∗B) → (A′,Γ′) of Hopf algebroids induced by the map B → tmf sends b4 to b4
and y6 to a2b4 mod decomposables. It follows from Equation (5) that the element
∆ already exists in the 0-line of the Adams-Novikov spectral sequence for B. Using
Sage to calculate the 3-series of the formal group law of the elliptic curve (4), one
finds that v1 is a2 up to a 3-adic unit. We conclude that

c4 = 4v21 − 24b4, c6 = −4v31 − 144y6.

This completes the proof of Proposition 4.8. □

By Remark 3.4, the elements c4, c6 ∈ π∗tmf lift to π∗B. The key to lifting the
other elements of π∗tmf is the following:

Theorem 4.9. There is a differential d5(∆) = αβ2 in the Adams-Novikov
spectral sequence for B. Moreover, αβ2 vanishes in π∗B, and 3∆ is a permanent
cycle.
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Figure 2. Cell structure of the 20-skeleton of B; the bottom cell
(in dimension 0) is on the left; straight lines are α1, and curved
lines correspond to α2 and α4, in order of increasing length.

Proof. The element αβ2 is detected in filtration 5 in the Adams-Novikov
spectral sequence for the sphere. We first check that there is no class above filtration
5 in stem 23 the Adams-Novikov spectral sequence for B. In Figure 2, we depict
the 20-skeleton of B. Now, αβ2 is the first class in filtration 5 in the Adams-
Novikov spectral sequence for the sphere, so there are no classes above filtration 5
in stem 23 in the algebraic Atiyah-Hirzebruch spectral sequence (converging to the
Adams-Novikov spectral sequence of B). Consequently, there are no classes above
filtration 5 in stem 23 of the Adams-Novikov spectral sequence for B. It follows
that αβ2 must be detected in filtration 5 in the Adams-Novikov spectral sequence
for B. Moreover, if the d5-differential on ∆ exists, then it is the longest one (and
hence 3∆ is a permanent cycle).

We now prove the d5-differential. We first claim that there is no nonzero target
for a dr-differential on ∆ for 2 ≤ r ≤ 4. Indeed, such a class must live in bidegree
(t−s, s) = (23, r), so we only need to check that there are no classes in that bidegree.
Such a class can only possibly come from those permanent cycles in the algebraic
Atiyah-Hirzebruch spectral sequence which are supported on stems 23 − 8 = 15,
23− 12 = 11, 23− 16 = 7, or 23− 20 = 3 of the Adams-Novikov spectral sequence
of the sphere. The only classes in these stems are in Adams-Novikov filtration 1, so
cannot possibly contribute to a class that lives in bidegree (t− s, s) = (23, r) with
2 ≤ r ≤ 4. Therefore, the first possibility for a differential on ∆ is the d5-differential
d5(∆) = αβ2. The existence of this differential is forced by the same differential in
the Adams-Novikov spectral sequence for tmf.

Therefore, αβ2 vanishes in the E∞-page of the ANSS for B; there may, however,
be a multiplicative extension causing αβ2 to be nonzero in π∗B. But multiplicative
extensions have to jump filtration, and we established that there are no classes above
filtration 5 in stem 23 of the Adams-Novikov spectral sequence for B. Therefore,
αβ2 = 0 in π∗B, as desired.

□

Corollary 4.10. The elements 3∆, 3∆2,∆3 ∈ π∗tmf lift to π∗B.

Proof. Theorem 4.9 verifies that 3∆ lifts to π∗B and that the brackets in
Corollary 4.6 are well-defined in π∗B. This implies that 3∆2 and ∆3 in π∗tmf lift
to π∗B up to indeterminacy. Remark 4.7 tells us the indeterminacy of the brackets
in Corollary 4.6. If 3∆2 +3n[3∆2] = 3(3n+1)∆2 (resp. ∆3 +3n∆3 = (3n+1)∆3)
lifts for some nonzero n ∈ Z(3), then so does 3∆2 (resp. ∆3) since 3n+1 is a 3-local
unit. □

The elements α, β, c4, c6, 3∆, 3∆2, ∆3, and b = ⟨β2, α, α⟩ (no indeterminacy)
generate the homotopy of tmf. Moreover, αβ2 = 0 in π∗B and α2 = 0 in the sphere,
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so b admits a lift to π∗B. Therefore, all generators of π∗tmf admit lifts to π∗B;
this yields Theorem 4.1.

5. Theorem 1.2 after localizing at 2

Our goal in this section is to prove:

Theorem 5.1. The map π∗B(2) → π∗tmf(2) is surjective on homotopy.

Together with Theorem 4.1 and Corollary 3.6, this proves Theorem 1.2.

Convention 5.2. We shall localize at 2 throughout this section, unless explic-
itly mentioned otherwise.

5.1. The Adams-Novikov spectral sequence for tmf. In this section, we
review the Adams-Novikov spectral sequence for tmf at p = 2. The following result
is well-known, and is proved in [Bau08] (see also [Beh20, Proposition 1.4.9]):

Theorem 5.3. The E2-page of the descent spectral sequence (isomorphic to the
Adams-Novikov spectral sequence) for tmf is

H∗(Mell;ω
2∗) ∼= Z(2)[c4, c6,∆

±1, η, a21η, ν, ϵ, κ, κ]/I,

where I is the ideal generated by the relations

2η, ην, 4ν, 2ν2, ν3 = ηϵ,

2ϵ, νϵ, ϵ2, 2a21η, νa
2
1η, ϵa

2
1η, (a

2
1η)

2 = c4η
2,

2κ, η2κ, ν2κ = 4κ, ϵκ, κ2, κa21η,

νc4, νc6, ϵc4, ϵc6, a
2
1ηc4 = ηc6, a

2
1ηc6 = ηc24,

κc4, κc6, κc4 = η4∆, κc6 = η2(a21η)∆, 1728∆ = c34 − c26.

Remark 5.4. The elements c4 and 2c6 are permanent cycles. There is a map
tmf → tmf1(3), where the target is complex oriented. The elements c4 and 2c6
are nontrivial in π∗tmf1(3). In fact, the image of the map tmf → tmf1(3) consists
of the elements c4, 2c6, c4∆

k, and 2c6∆
k for k ≥ 1, so these elements must be

permanent cycles in the Adams-Novikov spectral sequence for tmf.

The ANSS for tmf is essentially determined from Toda’s relation κν3 = 0 in
π29S. We will explain this statement in the rest of this section. The relation
κν3 = 0 ∈ π29S is enforced by the differential d5(β6/2) = κν3 in the ANSS for the
sphere (see [Isa14]). Then:

Lemma 5.5. There is a relation β6/2 = ∆ν2 in the E2-page of the Adams-
Novikov spectral sequence for tmf.

This gives the differential d5(∆ν2) = κν3 in the ANSS for tmf. By ν-linearity,
we have d5(∆) = κν. Since 4ν = 0 in the E2-page of the ANSS, the class 4∆
survives. The relation 4ν = η3 forces a d7-differential on 4∆. In summary:

Theorem 5.6. There are differentials d5(∆) = κν and d7(4∆) = κη3 in the
ANSS for tmf, and κν = 0 in π∗tmf.

In particular, since 2η = 0 in the ANSS, 8∆ survives to the E8-page. There
are no more differentials, so it is a permanent cycle. Theorem 5.6 then shows that
there is a Toda bracket 8∆ ∈ ⟨8, ν, κ⟩ in π∗tmf; this bracket is well-defined since
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8ν = 0 in π∗S. This can be expressed by the claim that 8∆ may be expressed as a
composite

S24 → Σ20Cν
κ−→ tmf,

where the first map is degree 8 on the top cell. Similarly, ∆η ∈ ⟨η, ν, κ⟩ in π∗tmf;
this bracket is well-defined since ην = 0 in π∗S. Arguing in the same way, and using
the spherical relations 2ν2 = 0, ϵν = 0, we find that:

Proposition 5.7. The following Toda brackets exist in π∗tmf:
(a) 8∆ ∈ ⟨8, ν, κ⟩;
(b) ∆η = ⟨η, ν, κ⟩;
(c) 2∆ν = ⟨2ν, ν, κ⟩;
(d) ∆ϵ = ⟨ϵ, ν, κ⟩;
(e) ∆ηκ = ⟨ηκ, ν, κ⟩;
(f) ∆ηκ = ⟨ηκ, ν, κ⟩.

None of these except the first have any indeterminacy.

To describe the other elements in π∗tmf, we adopt a slightly different approach
from Section 4.1 — we will not bother writing down all the generators of π∗tmf as
Toda brackets of spherical elements unless it is convenient/necessary to do so. This
is only to streamline exposition, although one can of course work this out at one’s
own leisure; see Remark 5.11.

The d5-differential on ∆ forces a differential d5(∆
k) = k∆k−1κν. The d7-

differential d7(∆4) = ∆3κη3 now implies that the classes {∆8k, 2∆8k+4, 4∆4k+2, 8∆2k+1}
survive to the E8 = E9-page. In fact, these are permanent cycles. A simple induc-
tion on k shows:

Proposition 5.8. Up to units, we have
(a) ∆8k ∈ ⟨2,∆8k−1η3, κ⟩ with indeterminacy 2Z(2){∆8k};
(b) 2∆8k+4 ∈ ⟨2,∆8k+3η3, κ⟩ with indeterminacy 2Z(2){2∆8k+4};
(c) 4∆4k+2 ∈ ⟨2, 2∆4k+1ν, κ⟩ with indeterminacy 2Z(2){4∆4k+2};
(d) 8∆2k+1 ∈ ⟨8,∆2kν, κ⟩ with indeterminacy 8Z(2){8∆2k+1}.

We now turn to the other generators of π∗tmf, listed in [Beh20, Figure 1.2].

Proposition 5.9. We have the following Toda brackets in π∗tmf, each without
any indeterminacy:

(a) ∆2ν = ⟨ν, 2ν∆, κ⟩;
(b) ∆4η = ⟨η,∆3η3, κ⟩;
(c) ∆4ν = ⟨ν,∆3η3, κ⟩;
(d) ∆4ϵ = ⟨ϵ,∆3η3, κ⟩;
(e) ∆4κ = ⟨κ, 4ν, 3ν, 2ν, ν, κ4⟩;
(f) 2∆5ν = ⟨2ν,∆4ν, κ⟩;
(g) ∆5ϵ = ⟨ϵ,∆4ν, κ⟩;
(h) ∆6ν = ⟨ν, 2∆5ν, κ⟩;

Remark 5.10. We have excluded those elements which can be derived using
the multiplicative structure. All other elements (except for c4∆

k and 2c6∆
k) can

be expressed as products of the elements listed in Propositions 5.7, 5.8, and 5.9.
Importantly, the proofs of these propositions only use κν = 0 in π∗tmf (via Theorem
5.6) and multiplicative relations in the sphere.
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Remark 5.11. There are a lot of interesting multiplicative extensions, de-
scribed in [Bau08, Section 8], but we will not need them. Each of these relations
can be derived essentially only using the d5-differential of Theorem 5.6 and the
multiplicative structure in the homotopy of the sphere.

We can recast these extensions from the following perspective. The spectrum
Cν is the Thom spectrum of the Spin-bundle over S4 determined by the generator
of π4BSpin. Since BSpin is an infinite loop space, this bundle extends to one over
ΩS5, and hence over the intermediate James constructions Jk(S

4) for all k ≥ 1.
Let Jk(S

4)µ denote the Thom spectrum of this bundle, so J1(S
4)µ = Cν. Since

{Jk(S4)} forms a filtered E1-space, we obtain a map Cν∧k → Jk(S
4)µ. Taking the

product of κ : Σ20Cν → tmf with itself k times defines a map

κk : Σ20kJk(S
4)µ → Σ20kJk(S

4)µ ∧ tmf → tmf.

Suppose x ∈ π∗S lifts to a map S4k+|x| → Jk(S
4)µ which given by x on the top

(4k-dimensional) cell of Jk(S
4)µ. Then the composite S4k+|x| → Jk(S

4)µ ∧ tmf
defines an element of the form x∆k ∈ π24k+|x|tmf. For instance, we have:

(a) ∆2ν ∈ ⟨ν, 2ν, ν, κ2⟩;
(b) ∆4η ∈ ⟨η, 4ν, 3ν, 2ν, ν, κ4⟩;
(c) ∆4ν ∈ ⟨ν, 4ν, 3ν, 2ν, ν, κ4⟩;
(d) ∆4ϵ ∈ ⟨ϵ, 4ν, 3ν, 2ν, ν, κ4⟩;
(e) ∆4κ ∈ ⟨κ, 4ν, 3ν, 2ν, ν, κ4⟩;
(f) 2∆5ν ∈ ⟨2ν, 5ν, 4ν, 3ν, 2ν, ν, κ5⟩;
(g) ∆5ϵ ∈ ⟨ϵ, 5ν, 4ν, 3ν, 2ν, ν, κ5⟩.

The brackets in (b), (c), and (e) appear in [Bau08, Corollary 8.7]. The others may
also be obtained by arguing as Bauer does: they are consequences of the bracket
κ = ⟨ν, 2ν, 3ν, 4ν, ν, η⟩ = ⟨ν, 2ν, 3ν, 4ν, η, ν⟩ in π∗tmf (no indeterminacy), stated as
[Bau08, Lemma 8.6].

Remark 5.12. Mark Behrens pointed out to us that Mahowald expected κ7 = 0
in π∗S(2) (it is known that κ6 = 0 in π∗tmf(2)). It would be interesting to know
whether this is related to the existence of ∆8 in π∗tmf via the approach given in
Remark 5.11.

Finally, we prove Proposition 5.9.

Proof of Proposition 5.9. We prove this case-by-case.
(a) Since d5(∆

2) = 2∆κν and 2ν2 = 0 in the ANSS for the sphere, we find
that ∆2ν ∈ ⟨ν, 2ν∆, κ⟩. We provide the argument for indeterminacy in this
case, but not for the others since the argument is essentially the same. The
indeterminacy lives in κπ31tmf + νπ48tmf, but κπ31tmf ∼= νπ48tmf ∼= 0.

(b) Since d7(∆
4) = ∆3κη3, we have d7(∆

4η) = ∆3κη4 = 0. Therefore, ∆4η ∈
⟨η,∆3η3, κ⟩. This bracket is well-defined because ∆3η3 = 4∆3ν exists in
π∗tmf, ην = 0 in the sphere, and κη3 = 0 in tmf.

(c) Similarly, since d7(∆
4) = ∆3κη3, we have d7(∆

4ν) = ∆3κη3ν = 0. There-
fore ∆4ν ∈ ⟨ν,∆3η3, κ⟩. This bracket is well-defined because ∆3η3 exists
in π∗tmf, ην = 0 in the sphere, and κη3 vanishes in tmf.

(d) Similarly, since d7(∆
4) = ∆3κη3, we have d7(∆

4ϵ) = ∆3κη3ϵ = 0, since
2ϵ = 0. Therefore, ∆4ϵ ∈ ⟨ϵ,∆3η3, κ⟩. This bracket is again well-defined.

(e) This is in [Bau08, Corollary 8.7], where ∆4κ is denoted e[110, 2].
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(f) Since d5(∆
5) = 5∆4κν, we have d5(2∆

5ν) = 10∆4κν2 = 0, since 2ν2 = 0.
It follows that 2∆5ν ∈ 5⟨2ν,∆4ν, κ⟩. This is well-defined because ∆4ν
lives in π∗tmf, 2ν2 = 0 in the sphere, and κν = 0 in tmf.

(g) Similarly, since d5(∆
5) = 5∆4κν, we have d5(∆

5ϵ) = 5∆4κνϵ = 0, because
ϵν = 0. It follows that ∆5ϵ ∈ 5⟨ϵ,∆4ν, κ⟩, which is well-defined because
∆4ν lives in π∗tmf, ϵν = 0 in the sphere, and κν = 0 in tmf.

(h) Since d5(∆
6) = 6∆5κν, we have d5(∆

6ν) = 6∆5κν2 = 0. We there-
fore have ∆6ν ∈ 3⟨ν, 2∆5ν, κ⟩. This is well-defined because 2ν∆5 lives in
π∗tmf, 2ν2 = 0 in the sphere, and κν = 0 in tmf.

□

5.2. The Adams-Novikov spectral sequence for B. In this section, we
analyze the ring map B → tmf, and show that the generators of π∗tmf(2) lift to
π∗B(2). Again, we will localize at p = 2 throughout.

We begin by showing:

Proposition 5.13. There is an element in the 0-line of the E2-page of the
ANSS for B which lifts the element ∆ in the E2-page of the ANSS for tmf.

Proof. We begin by recalling a representative for ∆ in the cobar complex for
tmf at p = 2. Recall from Proposition 4.8 that the Hopf algebroid (BP∗tmf,BP∗BP⊗BP∗

BP∗tmf) is isomorphic to the elliptic curve Hopf algebroid (A,Γ) presenting the
moduli stack of cubic curves. As in the 3-complete setting (studied in Proposition
4.8), it is known that upon 2-completion, every elliptic curve in Weierstrass form
is isomorphic to one of the form

y2 + a1xy + a3y = x3.

Consequently (as in the 3-complete setting), the elliptic curve Hopf algebroid is iso-
morphic to a Hopf algebroid of the form (A′,Γ′) = (Z2[a1, a3], A

′[s, t]/I), where I is
some ideal consisting of complicated relations, and where the Hopf algebroid struc-
ture can be written down explicitly (as in [Bau08, Section 3]). A straightforward
calculation proves that the discriminant is then

(6) ∆ = a31a
3
3 − 27a43 = b34 − 27b26.

Turning to B, recall that we may identify BP∗B with BP∗[b4, y6]. The map B →
tmf induces a map (BP∗B,BP∗BP⊗BP∗ BP∗B) → (A′,Γ′) of Hopf algebroids that
sends b4 to b4 and y6 to b6 mod decomposables. It follows from Equation (6) that
the element ∆ already exists in the 0-line of the Adams-Novikov spectral sequence
for B. This finishes the proof of Proposition 5.13. □

Since the map B → tmf is an equivalence in dimensions ≤ 12 (Corollary 3.6),
the elements c4 and 2c6 lift to π∗B. We claim that c4∆

k and 2c6∆
k live in π∗B;

to show this, we argue as in Remark 5.4. There is a map B → B ∧ DA1 ≃ T (2)
(see also Remark 3.7), and there is a particular complex orientation of tmf1(3)
exhibiting it as a form of BP⟨2⟩, which sits in a commutative diagram

B //

��

T (2)

��

// BP

{{
tmf // tmf1(3).
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There are choices of indecomposables v1 and v2 producing an isomorphism π∗tmf1(3) ∼=
Z2[v1, v2] such that c4 is sent to v41 and ∆ is sent to v42 . The map T (2) → tmf1(3)
is surjective on homotopy, since v1 and v2 live in π∗T (2). Since the elements c4,
2c6, c4∆k, and 2c6∆

k for k ≥ 1 therefore already live in the homotopy of T (2), we
find by the same argument that these elements already live in the homotopy of B.

We next turn to showing that the other elements of π∗tmf lift to π∗B. The
following is the 2-local analogue of Theorem 4.9:

Theorem 5.14. There are differentials d5(∆) = κν and d7(4∆) = κη3 in the
ANSS for B. Moreover, κν = 0 in π∗B, and 8∆ is a permanent cycle.

Proof. To prove the differentials, first note that the d7-differential follows
from the d5-differential via the spherical relation 4ν = η3; it therefore suffices to
prove the d5-differential. The class κν lives in bidegree (23, 5) in the ANSS for
B, since it lives in that bidegree in the ANSS for both the sphere and for tmf.
We claim that if κν2 vanishes in π∗B, then the d5-differential follows. It suffices
to establish that d5(∆ν) = κν2, since the desired d5-differential then follows from
ν-linearity. Since κν2 is the first element of filtration 5 in the ANSS for the sphere
which does not come from an η-tower on the α-family elements (and such η-towers
are truncated by ANSS d3-differentials), there cannot be any differential off it.
Moreover, if it is killed on any finite page in the ANSS, then it must in fact be zero
in homotopy, since multiplicative extensions have to jump in filtration (and there
is nothing of higher filtration). We need to show that κν2 cannot be the target
of a dr-differential for 2 ≤ r ≤ 4; then the claimed d5-differential on the E5-page
is forced by the same differential in the ANSS for tmf. The algebraic Atiyah-
Hirzebruch spectral sequence for the ANSS of B implies that the only possibility
for a differential is a d3; but the source of any nontrivial d3-differential vanishes
when mapped to the ANSS for tmf, so no such d3-differential can exist.

We now show that κν2 vanishes in π∗B. For this, we argue as in [HM14,
Proposition 8.1]. Namely, [HM14, Lemma 8.2] states that κν2 ∈ ⟨η4σ, η, 2⟩. Recall
that η4 = h1h4; by [IWX20, Table 21], there is a σ-extension from h1h4 to h4c0.
There is no indeterminacy in the above Toda bracket, so κν2 will vanish if we show
that h4c0 vanishes in π23(B). In fact, it vanishes in the E2-page of the ANSS for B:
since the attaching map of the 8-cell of B is σ, the σ-extension on η4 implies that
h4c0 is killed in the algebraic Atiyah-Hirzebruch spectral sequence for the ANSS of
B by a d1-differential off the ANSS class h1h4 supported on the cell in dimension
8. □

Finally:

Proof of Theorem 5.1. Theorem 5.14 implies that 8∆ lifts to π∗B, and
that all the brackets in π∗tmf in Propositions 5.7, 5.8, and 5.9 are well-defined in
π∗B. The elements of π∗tmf in those propositions for which the bracket has no
indeterminacy therefore lift to π∗B. By Remark 5.10, all that remains is to show
that the constant multiples of the powers of ∆ which live in π∗tmf in fact lift to π∗B.
Theorem 5.14 implies that they lift up to indeterminacy, and this indeterminacy is
specified in Proposition 5.8. If ∆8k + 2n∆8k = (2n+ 1)∆8k lifts for some n ∈ Z(2),
then so does ∆8k since 2n + 1 is a 2-local unit. Similarly, one finds that 2∆8k+4,
4∆4k+2, and 8∆2k+1 also lift to π∗B, as desired. □
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Remark 5.15. We briefly look at the Adams spectral sequence for B. The
Steenrod module structure of the 20-skeleton of B is as in Figure 2; since we are at
the prime 2, straight lines are Sq4, and curved lines correspond to Sq8 and Sq16, in
order of increasing length. Using this, we can calculate the Adams spectral sequence
in small dimensions. The Adams charts below were created with Hood Chatham’s
Ext calculator, and the Steenrod module file for B in this range can be found at
https://sanathdevalapurkar.github.io/files/input-B-leq-24-prime-2.md.

The E2-page for B in the first few dimensions is shown in Figure 3; there are
no classes in higher Adams filtration in stem 23. The red class is g = κ, and the
purple lines are d2-differentials. The differential on the class in stem 23 already
exists in the Adams spectral sequence for the sphere as d2(i) = h0Pd0. The other
classes in stem 23 except for the one in filtration 9 are permanent cycles, and there
is no multiplicative extension causing any of them to be κν on homotopy.

As shown in Figure 4, there is also a d3-differential on the leftmost class x
(0)
24,1

in bidegree (24, 6) (which supports a h0-tower) to the class in bidegree (23, 9); the
class h0x

(0)
24,1 is a permanent cycle in the ASS for B which is sent to 8∆ in the ASS

for tmf. The class in bidegree (25, 5) is a permanent cycle in the ASS for B which
is sent to ∆η in the ASS for tmf.

Remark 5.16. We now compare the approach of this paper with that of
[HM02], where the E1-ring B was constructed under the name X. The special
case of our Theorem 1.2 for elements in π∗tmf of ANSS filtration 0 is stated as
[HM02, Theorem 11.1], where a proof is only sketched.

First, their Proposition 11.2 is a combination of our Theorem 4.9 and Theorem
5.14. Secondly, their proof proceeds by calculating the mod 2 Adams spectral
sequence of B in dimensions ≤ 24 to show that κν vanishes in the 2-local homotopy
of B. Their argument does not seem to resolve potential multiplicative extensions:
as Figure 4 shows, there are two possibilities for multiplicative extensions in the
Adams spectral sequence which could make κν nonzero in π∗B(2). (Namely, the
classes in bidegrees (23, 6) and (23, 7) could represent κν.) Thirdly, Remark 5.11
essentially gives a proof of their Lemma 11.5, which seems to appear without proof.

6. Applications

In this section, we study some applications of Theorem 1.1 and Theorem 1.2.

6.1. A conjecture of Baker’s. In [Bak17], Baker constructed a certain col-
lection of E∞-ring spectra Mjr with E∞-ring maps Mj1 → HZ, Mj2 → bo, and
Mj3 → tmf. He conjectured in [Bak17, Conjecture 6.2] that the map π∗Mj3 →
π∗tmf is surjective. In this section, we show that this conjecture follows from
Theorem 1.2.

We begin by recalling the definition of the E∞-ring spectra Mjr.

Definition 6.1. Let BO⟨2r⟩[2r+1−1] denote the (2r+1 − 1)-skeleton of BO⟨2r⟩.
Since BO⟨2r⟩ is an infinite loop space, the skeletal inclusion BO⟨2r⟩[2r+1−1] →
BO⟨2r⟩ induces a map Ω∞Σ∞BO⟨2r⟩[2r+1−1] → BO⟨2r⟩. The Thom spectrum of
this map is the E∞-ring Mjr.

There is an evident E∞-map Mjr → MO⟨2r⟩, which in the case r = 3 defines
an E∞-map Mj3 → MString. The following result proves the aforementioned
conjecture of Baker’s as an application of Theorem 1.2:

https://sanathdevalapurkar.github.io/files/input-B-leq-24-prime-2.md
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Figure 3. E2-page of the Adams spectral sequence for B. The
class highlighted in red is κ.

Figure 4. E3-page of the Adams spectral sequence for B. The
class highlighted in red is κ. There are no differentials in this range
from the E4-page onwards.
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Proposition 6.2 ([Bak17, Conjecture 6.2]). The composite Mj3 → MString →
tmf is surjective on homotopy, where MString → tmf is the Ando-Hopkins-Rezk
orientation.

Proof. By Theorem 1.2, it suffices to show that the map B → MString fac-
tors through a map B → Mj3. Since Mj3 is the Thom spectrum of a bundle
over Ω∞Σ∞BString[15], this in turn follows from the existence of a map N →
Ω∞Σ∞BString[15] factoring N → BString. Recall that the map N → BString was
constructed via the map (1) of fiber sequences. The map S9 → B2String factors as
S9 → Ω∞−1Σ∞BString[15], and so the map of fiber sequences in (1) factors as

N //

∃
��

ΩS13 //

��

S9

��
Ω∞Σ∞BString[15] //

��

∗ //

��

Ω∞−1Σ∞BString[15]

��
BString // ∗ // B2String,

as desired. □

6.2. Hirzebruch’s prize question. Another application of Theorem 1.1 was
stated as [Hop02, Corollary 6.26], and provides an answer to Hirzebruch’s prize
question [HBJ92, Page 86]. See also [HM02].

Corollary 6.3. There exists a 24-dimensional compact smooth string mani-
fold M with Â(M) = 1 and Â(M, τM ⊗C) = 0.

Proof. By the discussion on [HBJ92, Page 86], the conditions on the Â-
genus of M are equivalent to the Witten genus of M being c34−744∆ = ∆(j−744),
where j is the j-function. Let M8

0 denote the Kervaire-Milnor almost parallelizable
8-manifold; then, the 8-manifold −M8

0 −224HP 2 (whose string cobordism class we
will denote by [Nc4 ], where Nc4 is the explicit manifold representative above) admits
a string structure by [Lau04, Lemma 15]. The map tmf → bo sends c4 ∈ π8tmf to
v41 ∈ π8bo. By Lemma 6.4, there is a commutative diagram:

(7) MString //

��

MSpin

��
tmf // bo,

where the left vertical map is the Ando-Hopkins-Rezk orientation and the right
vertical map is the Atiyah-Bott-Shapiro orientation. Consequently, the Witten
genus of −M8

0 − 224HP 2 is c4.
By Theorem 1.1, the element 24∆ ∈ π24tmf lifts to a class [N∆] in π24MString,

where N∆ is any manifold representative. Since 744∆ = 31 · 24∆, we conclude that
the string cobordism class of the 24-dimensional compact oriented smooth string
manifold N3

c4 − 31N∆ has Witten genus c34 − 744∆, as desired. □

The proof of Corollary 6.3 utilized the following lemma.
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Lemma 6.4. The diagram (7) commutes, where the left vertical map is the
Ando-Hopkins-Rezk orientation and the right vertical map is the Atiyah-Bott-Shapiro
orientation.

Proof. We need to show that the composite MString → tmf → bo comes
from the Atiyah-Bott-Shapiro orientation. By [AHR10, Corollary 7.12], it suffices
to show that this composite has the same characteristic series as the restriction of
the Â-genus to string manifolds. There is an isomorphism π∗bo⊗Q ∼= Z[β2], where
β2 lives in degree 4 and is the square of the Bott element. Moreover, π∗tmf ⊗Q is
isomorphic to the ring of rational modular forms (of weight given by half the degree
in π∗tmf⊗Q) by [Bau08, Proposition 4.4]. The map π∗tmf⊗Q → π∗bo⊗Q sends a
modular form of weight k with q-expansion f(q) =

∑
anq

n to the element a0(β2)k ∈
π2kbo ⊗ Q. Consequently, the composite π∗MString → π∗tmf ⊗ Q → π∗bo ⊗ Q
sends a string manifold M to the constant term of the q-expansion of its Witten
genus. The lemma will therefore follow if this constant term is the Â-genus of M ,
but this follows from the discussion on [HBJ92, Page 84]. □

Remark 6.5. The modular form c34 − 744∆ is θΛ24
− 24∆, where Λ24 is the

24-dimensional Leech lattice and θΛ24
is its theta function.

Remark 6.6. The original motivation for Hirzebruch’s prize question was to
relate the geometry of the 24-dimensional string manifold M of Corollary 6.3 to
representations of the monster group by constructing an action of the monster group
on M . The question of constructing this action remains unresolved.

Remark 6.7. The disussion on [HBJ92, Page 86] implies that Â(N∆) = 0

and Â(N∆, τN∆ ⊗C) = 24. It follows from [Sto92, Theorem A] that N∆ (which we
may assume is simply-connected by surgery) admits a metric with positive scalar
curvature. Since the Witten genus of N∆ is nonzero, Stolz’s conjecture in [Sto96]
would imply that it does not admit a metric of positive-definite Ricci curvature.
We do not know whether Stolz’s conjecture holds in this particular case. Note,
however, that there are examples of non-simply-connected manifolds which admit
positive scalar curvature metrics but no metrics of positive-definite Ricci curvature:
as pointed out to us by Stolz, a connected sum of lens spaces of dimension at least
3 gives such a manifold.

Corollary 6.3 may be generalized in the following manner. Recall the following
definition from [Ono04, Section 2.3]. Let j1(z) = j(z) − 744, and define jn(z) for
n ≥ 2 via nTn(j1(z)), where Tn is the weight zero Hecke operator, acting on f(z)
via

Tnf(z) =
∑

d|n,ad=n

d−1∑
b=0

f

(
az + b

d

)
.

By [Ono04, Proposition 2.13], jn(z) is a monic integral polynomial in j(z) of degree
n; for instance,

j2(z) = j(z)2−1488j(z)+159768, j3(z) = j(z)3−2232j(z)2+1069956j(z)−36866976.

The functions jn(z) for n ≥ 0 (where j0(z) = 1) form a basis for the complex
vector space of weakly holomorphic modular forms of weight 0, and appear in the
denominator formula for the monster Lie algebra. They may be defined by Faber
polynomials on j. The generalization of Corollary 6.3 is as follows.
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Proposition 6.8. For all n ≥ 0, there is a 24n-dimensional compact smooth
string manifold M24n whose Witten genus is ∆njn(z).

Remark 6.9. By arguing as in [HBJ92, Pages 86-87], we find that the twisted
Â-genera of bundles over M24n constructed from the complexified tangent bundle
of M are integral linear combinations of dimensions of irreducible representations
of the monster group; for instance, Â(M48; Sym2(τM ⊗C)) is the coefficient of q2 in
∆2j2(z), which is 2×(21296876+196883+1). More generally, Â(M24n; Sym2(τM ⊗
C)) is an integral linear combination of the dimensions of the n smallest irreducible
representations of the monster group. In light of Hirzebruch’s original motivation
for his prize question (see Remark 6.6), it seems reasonable to conjecture that the
24n-dimensional string manifold M24n admits an action of the monster group by
diffeomorphisms.

Remark 6.10. It would be interesting to know if there is an analogue of Propo-
sition 6.8 for other McKay-Thompson series.

Before providing the proof, we need the following result.

Theorem 6.11. A modular form f is in the image of the boundary homomor-
phism π∗tmf → MF∗ in the Adams-Novikov spectral sequence if and only if it is
expressible as an integral linear combination of monomials of the form aijkc

i
4c

j
6∆

k

with i, k ≥ 0 and j = 0, 1, where

aijk =


1 i > 0, j = 0

2 j = 1

24/ gcd(24, k) i, j = 0.

Proof. This is [Hop02, Proposition 4.6], proved in [Bau08]. □

Proof of Proposition 6.8. We have

∆njn(z) =
∑

0≤k≤n

αkj(z)
k∆n =

∑
0≤k≤n

αkc
3k
4 ∆n−k,

for some integers αk (where αn = 1). By Theorem 1.1 and Theorem 6.11, it suffices
to show that the constant term α0 of jn(z) (when expanded as a monic integral
polynomial in j(z)) is a multiple of 24/ gcd(24, n). The j-function vanishes on a
primitive third root of unity, so α0 = jn(ω). Its generating function is∑

n≥0

jn(ω)q
n = −j′(z)

j(z)
=

c6
c4

,

where q = e2πiz and ω is a primitive third root of unity.
Let m ≥ 1; we claim that the coefficients a4,m and a6,m of qm in the q-expansion

for c4 and c6 (respectively) are divisible by 24/ gcd(24,m). Indeed, the expression
for their q-expansion shows that a4,n = −240σ3(n) and a6,n = 504σ5(n), and
both 240 and 504 are already divisible by 24. Since the coefficient of qm in 1/c4
can be expressed as an integral linear combination of the a4,k, it follows that the
coefficient of qm for m ≥ 1 in c6/c4 (which is jm(ω)) is divisible by 24, and hence
by 24/ gcd(24,m), as desired. □
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