WOOD’S THEOREM (NOTES)

This document should be read with care.

1. INTRODUCTION
2. GENERALITIES

Lemma 1. Let X — Mgpg be a flat map from a Noetherian Deligne-Mumford stack which
admits an even periodic refinement X. Then the Eo-ring A = T'(X, Ox) is Ly,-local for some n.

Proof. There is a descending sequence of closed substacks of Mpg given by Ml?é”, and each
M%g‘ is obtained from M%gl -1 by taking the substack corresponding to the vanishing locus of
a regular element. As X is Noetherian, there is some n such that X Xy, M%g is empty. It
suffices to show that if that Spec B — X is a flat morphism, then the associated Landweber exact
spectrum B is E,-local. Indeed, since A = T'(X, Ox) is a homotopy limit of Ox(Spec B — X)
over all étale maps Spec B — X, it follows from the fact that L,-local spectra are closed under
limits that T'(X, Ox) is also L-local.

We now prove the fact used above, that if that Spec B — X is a flat morphism with B
a Noetherian ring, then the associated Landweber exact spectrum B is Ep-local. Let Z be
an F,-acyclic spectrum, so we obtain an associated quasicoherent sheaf F; on Mpg. Let
f:SpecB —» X — M%g — Mpg be the associated morphism; we need to show that f*F,; = 0.
It suffices to show that ?Z|M§g = 0. However, the map g : SpecmgFE, — M%g is a faithfully
flat cover, so we need to show that ¢*Fz = 0. However, this is immediate since g*F; is the
moF,-module associated to E,, A Z, which vanishes since Z is E,-acyclic. O

We note the following consequence:

Proposition 2. Let X — M,(n) be a formally étale map from a Noetherian and separated
Deligne-Mumford stack which is of finite type over SpecZ,, such that the map X — Mpg is
representable. Let X denote the even-periodic Deligne-Mumford stack X wvia [BLI0, Theorem
8.1.4]. Let A =T(X,0x), so that A is Ly-local by Lemma[ll Then, there is an equivalence

LK( )A ~ H E}zAut(x)NGal(Fp/Fp).
e XInl (Fy)

Proof. We begin by proving that if X" is the locus of X Xspecz, SpecF, where the formal
group H over X determined by the map X — Mpg has height exactly n, then X" is étale over
Spec Fp; in particular, X ("] is zero-dimensional and finite. By our assumptions on X, there is
a finite étale cover f : Y — X of X by a scheme Y. It follows that the map f’: Y — X[
is also finite étale. Since X is of finite type over Spec Z, by assumption, we know that Y is of
finite type over Spec Z,, and that X ["] is of finite type over Spec F,. To prove that X [] is étale
over SpecFy,, it therefore suffices to prove that the map Y[l — Spec F, is étale. Since Yyl s
of finite type over SpecF,,, it suffices to prove that Yl is formally étale over Spec F,.

Let z : Speck — Y be a point of Y lying inside the subscheme Y™ where k is a finite
field of characteristic p. This defines a p-divisible group H, over k, given by the map Speck —
Y — M,(n). Since the map Y — M, (n) is formally étale, there is an isomorphism (X Xspecz,
Spec F,)2 = Spf k[uy, -+ ,un_1]. The subscheme (Y[")” consists of those deformations of H,
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of height exactly n. This implies that wy,--- ,u,_; must vanish in (Y™ so (YI") = Spec k.
Since this is étale over SpecF,, it follows that Yl is formally étale over Spec F,, as desired.
Since the map X — M,(n) — Mpg is representable, we learn that for each x € X [n] (ﬁ),
the automorphism group Aut(x) injects into the Morava stabilizer group of automorphisms of
the associated height n formal group. Since X is separated, this automorphism group is finite.
We can now prove the proposition. In the case when X is affine, this result can be proved
by arguing as in [BLI0, Proposition 14.4.6]. The general case is now a formal consequence of
descent. By our assumptions on X, there is a finite étale cover fy : Y — X of X by an affine
scheme Y = Spec By. This refines to a finite étale cover f : Y — X, where Y = Spec B with B an
even periodic Noetherian E.-ring. It follows that there is an equivalence A — ]'ngotS B®as,
Since B®4® ~ T(Y>xm nyxm>7 we learn that B®4® is an even periodic Noetherian E.-ring.
It follows that there is a K (n)-local equivalence Ly () A — 1'&nTot‘g LK(n)B®LK<n>A', and each

term L K(n)B®LK m** is a wedge of copies of E,. The desired result now follows from the fact

h

[ °
that there is an equivalence E,’}G — @Tots E, ERCT o 1&1 Tot® ngG. E,. O

The even-periodic derived stack BZ/2 defining real K-theory has “finite cohomological di-
mension”, while the same claim is false for the classical stack BZ/2. Making this statement
precise involves a discussion of the Adams-Novikov spectral sequence. We begin our discussion
with a construction, outlined in [DFHHI4, Chapter 9]. The reader should be warned that we
will be particularly egregious in implicitly localizing at a prime in this section.

Construction 3. Let R be a p-local homotopy commutative ring spectrum. Define an algebraic
stack M r over Spec Z ) as follows. The stack associated to the Hopf algebroid (MUs,, MU, MU)
is Mgq, so that the global sections functor supplies a symmetric monoidal equivalence between
QCoh(Mpg) and the category of evenly graded (MUs,, MU3,MU)-comodules. This is explained
in [Nau07, Remark 34]. If R is a p-local homotopy commutative ring spectrum such that MUz, R
is an algebra object in evenly graded (MUs,, MU2,MU)-comodules, then MUy, R corresponds to
a quasicoherent sheaf F(R) of algebras on Mpg. Thus, we can define a stack Mg as the relative
spec Spec(F(R)) of F(R); explicitly,

Mp = colimaer Spec F(R)(MU*T1)/G,,, = colimaer Specm, (MU A R) /G,
where the G,,-action enforces the grading.

Theorem 4. Assume that X — Mgg is a flat and affine map from a Noetherian and locally
separated Deligne-Mumford stack X such that X refines to an even periodic derived Deligne-
Mumford stack X. Let E =T(X,Ox) denote its global sections. Then Mg can be identified with
the underlying ordinary Deligne-Mumford stack X .

Proof. There is a flat covering map M%‘)(‘;)rd = Spec L — Mpgqg. Since X — Mgpq is an affine
morphism, the pullback Xc°°rd = M%Oé)rd XMpe X 15 an affine scheme, and the morphism p :
Xeoord 5 X is a flat and affine cover of X. Let us first show that for any étale cover Spec A — X,
there is natural isomorphism

(1) 7+ (Ox(Spec A) @ MUP) & (p,.p*m.Ox)(Spec A).
There is a commutative diagram, where the square is a pullback:
Xeoord ___ yfeeord
P

Spec A X Mrq
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Since X is an even periodic refinement of X — Mpq, we have identifications

7. (Ox (Spec A) @ MUP) = MUP, (O (Spec 4)) = (g.w®*)(Spec A)
>~ (1,0x)(Spec A X ptpe X)) = (p.p*1.O0x)(Spec A).

Equation implies that 7,.(Ox ® MUP) ~ p,p*m.Ox. There is a descent spectral sequence
H*(X; 7. (Ox @ MUP)) = m.(E @ MUP).

Since X — Mpg is affine, the main result of [MM15] implies that I'(Oyx ® MUP) = E @ MUP.
There is therefore an isomorphism H*(X; p,p* (7. O0x)) = H*(X; 7. (Ox @ MUP)). The map p is
affine, so the Leray spectral sequence degenerates to give an isomorphism

T(Xord: prr, Ox) if 5=0

H* (X p.p™ (7. 0x)) ~ H* (X p* (1. O )) =
0 else.

We conclude that T'(X°; p*r,0x) ~ 7.(E ® MUP). By running the same argument with
Xeoord peplaced by (MES™d) *2r6 ® Xy X = (X 0rd)Xx® we learn that I'((X0ord)*x®; p*mr, Oy ) =~
7« (E ® MUP?®). This implies that the Hopf algebroid

E.(MUP) —= E.(MUP ® MUP) —=% - --

is exactly the presentation of X via the flat cover X°°°™d — X but this is precisely the definition

Theorem |4| provides another proof of one the main results of [Banld4].
Let X be as in Theorem [4l Recall that the descent spectral sequence runs

Ey" = H*(X;m.0x) = m.I(X, Ox).
There is also an Adams-Novikov spectral sequence
'E3" = Extypp, mup (MUP,, S*MUP, (T'(X, 0x))) = H* (Mg; 7.0x) = m.IT(X, Ox).

It follows from Theorem [4| that there is an isomorphism of spectral sequences E5™* &' E>**. In
other words:

Corollary 5. Let X be as in Theorem . Then, the descent spectral sequence for m.I'(X, Ox) is
isomorphic to the Adams-Novikov spectral sequence.

There are numerous interesting consequences of Corollary [5| For instance:

Proposition 6. Let X be as in Theorem . Then, the descent spectral sequence for m, (X, Ox)
degenerates at a finite page with a horizontal vanishing line.

Proof. By Corollary 5] the descent spectral sequence is isomorphic to the Adams-Novikov spec-
tral sequence. Lemma [1] implies that I'(X, Ox) is L,-local for some n, so the desired result
follows from the smash product theorem, which is equivalent to the statement that the Adams-
Novikov spectral sequence for a L,-local spectrum degenerates at a finite page with a horizontal
vanishing line. O

In particular, each element in . I'(X, Ox) has finite Adams-Novikov filtration, even if X has
infinite cohomological dimension.
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3. G-EQUIVARIANT WOOD EQUIVALENCES
3.1. A Wood equivalence for KUg. In this section, we prove:

Proposition 7. Let G be a compact abelian Lie group, i.e., a group isomorphic to T X F where
T is a torus and F is a finitely generated abelian group. There is a G-equivariant equivalence
KOg A Cn ~ KUg, where Cn s given the trivial G-action.

It is possible to give a very classical proof of Proposition [7, but we provide an algebro-
geometric proof which will easily generalize to TMF.

We first recall how the spectra KOg and KUg are constructed in spectral algebraic geometry.
Let X denote the derived stack associated to KO, so that the underlying stack is BZ/2, and the
map BZ/2 — Mgg classifies the multiplicative formal group é:n This has a degree two finite
étale cover by the scheme Spec Z, which refines to a finite étale cover p : Y = Spec KU — X.

Let G (resp. Gy,) denote the derived p-divisible group defined over X (resp. Y) via the
construction of [Lurl8]. Then, the spectrum KOg can be defined as follows (see [Lur09, Section
3.4]): for a G-space X, the cohomology KO¢(X) is the global sections of a quasicoherent sheaf
Fe(X) defined over the mapping stack Map(GY, G). Here, GV is the Pontryagin dual of G (so
it is a finitely generated abelian group). Similarly, we obtain a definition of KU¢g(X).

Proof of Proposition[]. We begin by noting that the classical Wood cofiber sequence, stating
that KO A Cnp ~ KU, translates to the statement that p,Oy ~ Ox A F(Cn), where F(Cn) is
the sheaf over X associated to Cn. Define Yo = Map(GV, G,,) and Xg = Map(G", G), and let
p% : Yo — X denote the obvious map of mapping stacks. It follows from the above discussion
that it suffices to prove that there is an equivalence p&0Oy, ~ F(Cn). There is a Cartesian
diagram

Yo >y

17

XG?X

It follows that
POy = pl [0y = [p.0y = f*(Ox AF(Cn)) = Oxg A f*F(Cn).

In order to finish the proof, it will therefore suffice to show that f*F(Cn) ~ Fo(Cn).

This is true more generally: if X is a finite CW-complex on which G acts trivially, then
Fe(X) ~ f*F(X). The proof is by induction on the number of cells. When X = %, we know
that Fg(x) = Ox,, in which case the result is obvious. Every G-space with the trivial G-action
is built from the trivial G-orbit G/G = *, so the desired result follows from the observation that
F¢ takes finite homotopy colimits of G-spaces to homotopy limits of quasicoherent sheaves by
[Lur09, Theorem 3.2(2)]. O

The same method of proof holds more generally. Let DA(1) and X3 denote the spectra of
[Mat16]. Then, the same argument shows:

Proposition 8. Let G be a compact abelian Lie group. Then, there is a G-equivariant 2-local
equivalence TMFg A DA(1) ~ TMF,(3)q, where DA(1) is given the trivial G-action. There is
also a G-equivariant 3-local equivalence TMFg A X3 ~ TMF(2)q, where X3 is again given the
trivial G-action.

Remark 9. Let G be a compact Lie group which is possibly nonabelian. If one could construct
derived stacks X¢ and Yg, functors Fg, and an analogue of [Lur09, Proposition 3.2], then the
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same proof would show that Proposition [7] and Proposition [§] are true for every compact Lie
group. We know that Proposition [7]is indeed true for G a general compact Lie group; see, e.g.,
[MNNTI7, Theorem 9.8]. See [Lur09, Section 5.1] for the case of TMF.

4. REAL WOOD EQUIVALENCES

4.1. A Real Wood equivalence for KUgr. Let KUgr denote the genuine Cs-spectrum given
by Atiyah’s Real K-theory spectrum (see [Ati66]); it is a Borel Cy-spectrum whose underlying
spectrum is KU, and whose fixed points (KUg)“? ~ (KUgr)"“2 is KO. Let kR denote the
connective cover of KUg; this is a Cs-spectrum such that the underlying spectrum kRS is the
connective cover bu of KU, and such that kR is the connective cover of KU%2 = KO.

The equivalence Cn ~ £ ~2CP? suggests a natural Cy-action on C7, given by complex conju-
gation. In order to define this precisely, we will need to recall a few things. We will denote by o
the sign (also known as the reduced regular) representation of Cs, and p the regular representa-
tion. In the group RO(Cs), we have p =1+ 0. If X is a Cy-spectrum, we will denote by mp, ¢ X
the RO(Cy)-graded homotopy group of X consisting of Co-equivariant maps SPT49° — X. The
Co-spectrum C7) is then defined to be the cofiber of an element 77 € 7 1.5°. This element is a map
S — SO and is the stable representative of the following unstable map. Let C? — {0} — CP!
denote the Cs-equivariant map (x,y) — [z : y], where both the source and target are given the
complex conjugation action. Then this map can be identified with the map S°+° = §'+27 — §r,
so we get a stable map 77 : S7 — S°. We then have (see [GHIRIT, Proposition 10.12]):

Theorem 10. There is a Co-equivariant equivalence boc, A C1 ~ kR.

An easy consequence is the existence of a Cy-equivariant equivalence KO¢, A Cf ~ KUg.

Proof of Theorem [10 We need to show that there is a cofiber sequence %~7boc, RN boc, = kR.
On the underlying spectra, this is precisely the statement of Wood’s theorem. We therefore need
to show that the induced composite on Cs-fixed points is still a cofiber sequence. By construction,
(boc,)? = bo V bo, and kR = bo. Therefore, it suffices to show that (X7boc,)“? ~ bo, and
that the induced sequence bo — bo V bo — bo is a cofiber sequence.

We begin by showing that (27boc,)? = bo. There is a cofiber sequence Co, — S° — S,
so we obtain a cofiber sequence boc, A Ca, — boc, = X7boc,. Taking Cs-fixed points, we get
a cofiber sequence bo — boVbo — (£7boc, ). The first map, however, is simply the inclusion
of Z into RO(C5) which sends 1 to p; this inclusion is split, so we obtain a splitting of the above
cofiber sequence. It follows that (X7boc,)? = bo, as desired.

It remains to show that the induced composite bo = (£7boc,)“? — bo V bo = (boc, )¢ —
bo = kR is a cofiber sequence. The second map bo V bo — bo is simply the fold map V, so
it suffices to show that the first map 772 : bo — bo V bo is given by (k, —k) for some integer k.
To show this, consider the commutative diagram

bo —= (£7bog, )¢? — (boc, ) —=bo V bo

U R N A

Ybo —— (Xbog, )¢ — (bog, )¢ ——— bo
The map bo — Ybo is zero for dimension reasons, so by commutativity of this diagram, the
horizontal map bo — bo V bo factors through the fiber of the fold map, which implies that it is
given by (k, —k) for some integer k. O

Remark 11. It is possible to prove this result in terms of the theory of derived stacks described
in the previous section; however, we have elected not to do so since that presentation obscures
the proof.
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Corollary 12. Let CPg° denote the infinite-dimensional complex projective space with its con-
jugation Cy-action. Then, the Atiyah-Hirzebruch spectral sequence computing the Cs-equivariant
KOc¢, -cohomology of CPg° degenerates at a finite page.

Proof. The Atiyah-Hirzebruch spectral sequence computing the Cs-equivariant KUg-cohomology
of CPg° collapses at the Es-page, because KUg is Real oriented. A thick subcategory argu-
ment now shows that the Atiyah-Hirzebruch spectral sequence computing the Cs-equivariant
KO¢,-cohomology of CPg° degenerates at a finite page. O

4.2. Cp-equivariant Wood equivalences. Being worked on.

[Ati66]
[Ban14]
[BL10]
[DFHH14]
[GHIR17]
[Lur09]
[Lurlg]
[Mat16]
[MM15]
[MNN17]

[Nau07]
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