
WOOD’S THEOREM (NOTES)

This document should be read with care.

1. Introduction

2. Generalities

Lemma 1. Let X → MFG be a flat map from a Noetherian Deligne-Mumford stack which
admits an even periodic refinement X. Then the E∞-ring A = Γ(X,OX) is Ln-local for some n.

Proof. There is a descending sequence of closed substacks of MFG given by M
≥m
FG , and each

M
≥m
FG is obtained from M

≥m−1
FG by taking the substack corresponding to the vanishing locus of

a regular element. As X is Noetherian, there is some n such that X ×MFG
M
≥n
FG is empty. It

suffices to show that if that SpecB → X is a flat morphism, then the associated Landweber exact

spectrum B̃ is En-local. Indeed, since A = Γ(X,OX) is a homotopy limit of OX(SpecB → X)
over all étale maps SpecB → X, it follows from the fact that Ln-local spectra are closed under
limits that Γ(X,OX) is also Ln-local.

We now prove the fact used above, that if that SpecB → X is a flat morphism with B

a Noetherian ring, then the associated Landweber exact spectrum B̃ is En-local. Let Z be
an En-acyclic spectrum, so we obtain an associated quasicoherent sheaf FZ on MFG. Let
f : SpecB → X →M

≥n
FG →MFG be the associated morphism; we need to show that f∗FZ = 0.

It suffices to show that FZ |M≥n
FG

= 0. However, the map g : Specπ0En → M
≥n
FG is a faithfully

flat cover, so we need to show that g∗FZ = 0. However, this is immediate since g∗FZ is the
π0En-module associated to En ∧ Z, which vanishes since Z is En-acyclic. �

We note the following consequence:

Proposition 2. Let X → Mp(n) be a formally étale map from a Noetherian and separated
Deligne-Mumford stack which is of finite type over SpecZp, such that the map X → MFG is
representable. Let X denote the even-periodic Deligne-Mumford stack X via [BL10, Theorem
8.1.4]. Let A = Γ(X,OX), so that A is Ln-local by Lemma 1. Then, there is an equivalence

LK(n)A '
∏

x∈X[n](Fp)

EhAut(x)oGal(Fp/Fp)
n .

Proof. We begin by proving that if X [n] is the locus of X ×SpecZp SpecFp where the formal

group H over X determined by the map X →MFG has height exactly n, then X [n] is étale over
SpecFp; in particular, X [n] is zero-dimensional and finite. By our assumptions on X, there is

a finite étale cover f : Y → X of X by a scheme Y . It follows that the map f ′ : Y [n] → X [n]

is also finite étale. Since X is of finite type over SpecZp by assumption, we know that Y is of

finite type over SpecZp, and that X [n] is of finite type over SpecFp. To prove that X [n] is étale

over SpecFp, it therefore suffices to prove that the map Y [n] → SpecFp is étale. Since Y [n] is

of finite type over SpecFp, it suffices to prove that Y [n] is formally étale over SpecFp.

Let x : Spec k → Y be a point of Y lying inside the subscheme Y [n], where k is a finite
field of characteristic p. This defines a p-divisible group Hx over k, given by the map Spec k →
Y →Mp(n). Since the map Y →Mp(n) is formally étale, there is an isomorphism (X ×SpecZp

SpecFp)
∧
x
∼= Spf k[[u1, · · · , un−1]]. The subscheme (Y [n])∧x consists of those deformations of Hx
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of height exactly n. This implies that u1, · · · , un−1 must vanish in (Y [n])∧x , so (Y [n])∧x
∼= Spec k.

Since this is étale over SpecFp, it follows that Y [n] is formally étale over SpecFp, as desired.

Since the map X → Mp(n) → MFG is representable, we learn that for each x ∈ X [n](Fp),
the automorphism group Aut(x) injects into the Morava stabilizer group of automorphisms of
the associated height n formal group. Since X is separated, this automorphism group is finite.

We can now prove the proposition. In the case when X is affine, this result can be proved
by arguing as in [BL10, Proposition 14.4.6]. The general case is now a formal consequence of
descent. By our assumptions on X, there is a finite étale cover f0 : Y → X of X by an affine
scheme Y = SpecB0. This refines to a finite étale cover f : Y→ X, where Y = SpecB with B an
even periodic Noetherian E∞-ring. It follows that there is an equivalence A → lim←−TotsB⊗A•.

Since B⊗A• ' Γ(Y×Xm,OY×Xm), we learn that B⊗A• is an even periodic Noetherian E∞-ring.

It follows that there is a K(n)-local equivalence LK(n)A → lim←−Tots LK(n)B
⊗LK(n)A

•
, and each

term LK(n)B
⊗LK(n)A

•
is a wedge of copies of En. The desired result now follows from the fact

that there is an equivalence EhGn → lim←−TotsE
⊗

EhG
n
•

n ' lim←−Tots
∏
g∈G• En. �

The even-periodic derived stack BZ/2 defining real K-theory has “finite cohomological di-
mension”, while the same claim is false for the classical stack BZ/2. Making this statement
precise involves a discussion of the Adams-Novikov spectral sequence. We begin our discussion
with a construction, outlined in [DFHH14, Chapter 9]. The reader should be warned that we
will be particularly egregious in implicitly localizing at a prime in this section.

Construction 3. Let R be a p-local homotopy commutative ring spectrum. Define an algebraic
stack MR over SpecZ(p) as follows. The stack associated to the Hopf algebroid (MU2∗,MU2∗MU)
is MFG, so that the global sections functor supplies a symmetric monoidal equivalence between
QCoh(MFG) and the category of evenly graded (MU2∗,MU2∗MU)-comodules. This is explained
in [Nau07, Remark 34]. If R is a p-local homotopy commutative ring spectrum such that MU2∗R
is an algebra object in evenly graded (MU2∗,MU2∗MU)-comodules, then MU2∗R corresponds to
a quasicoherent sheaf F(R) of algebras on MFG. Thus, we can define a stack MR as the relative
spec Spec(F(R)) of F(R); explicitly,

MR = colim∆op SpecF(R)(MU∧•+1)/Gm = colim∆op Specπ∗(MU∧•+1 ∧R)/Gm,

where the Gm-action enforces the grading.

Theorem 4. Assume that X → MFG is a flat and affine map from a Noetherian and locally
separated Deligne-Mumford stack X such that X refines to an even periodic derived Deligne-
Mumford stack X. Let E = Γ(X,OX) denote its global sections. Then ME can be identified with
the underlying ordinary Deligne-Mumford stack X.

Proof. There is a flat covering map Mcoord
FG = SpecL → MFG. Since X → MFG is an affine

morphism, the pullback Xcoord = Mcoord
FG ×MFG X is an affine scheme, and the morphism p :

Xcoord → X is a flat and affine cover of X. Let us first show that for any étale cover SpecA→ X,
there is natural isomorphism

(1) π∗(OX(SpecA)⊗MUP) ∼= (p∗p
∗π∗OX)(SpecA).

There is a commutative diagram, where the square is a pullback:

Xcoord //

p

��

Mcoord
FG

q

��
SpecA // X

f
// MFG
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Since X is an even periodic refinement of X →MFG, we have identifications

π∗(OX(SpecA)⊗MUP) = MUP∗(OX(SpecA)) = (q∗ω
⊗∗)(SpecA)

∼= (π∗OX)(SpecA×MFG
Xcoord) = (p∗p

∗π∗OX)(SpecA).

Equation (1) implies that π∗(OX ⊗MUP) ' p∗p∗π∗OX. There is a descent spectral sequence

H∗(X;π∗(OX ⊗MUP))⇒ π∗(E ⊗MUP).

Since X → MFG is affine, the main result of [MM15] implies that Γ(OX ⊗MUP) = E ⊗MUP.
There is therefore an isomorphism H∗(X; p∗p

∗(π∗OX)) ∼= H∗(X;π∗(OX ⊗MUP)). The map p is
affine, so the Leray spectral sequence degenerates to give an isomorphism

Hs(X; p∗p
∗(π∗OX)) ' Hs(Xcoord; p∗(π∗OX)) ∼=

{
Γ(Xcoord; p∗π∗OX) if s = 0

0 else.

We conclude that Γ(Xcoord; p∗π∗OX) ' π∗(E ⊗ MUP). By running the same argument with
Xcoord replaced by (Mcoord

FG )×MFG
•×MFG

X = (Xcoord)×X•, we learn that Γ((Xcoord)×X•; p∗π∗OX) '
π∗(E ⊗MUP•). This implies that the Hopf algebroid

E∗(MUP) // // E∗(MUP⊗MUP) // //
// · · ·

is exactly the presentation of X via the flat cover Xcoord → X; but this is precisely the definition
of ME . �

Theorem 4 provides another proof of one the main results of [Ban14].
Let X be as in Theorem 4. Recall that the descent spectral sequence runs

E∗,∗2 = H∗(X;π∗OX)⇒ π∗Γ(X,OX).

There is also an Adams-Novikov spectral sequence

′E∗,∗2 = Ext∗MUP∗MUP(MUP∗,Σ
∗MUP∗(Γ(X,OX))) ∼= H∗(ME ;π∗OX)⇒ π∗Γ(X,OX).

It follows from Theorem 4 that there is an isomorphism of spectral sequences E∗,∗2
∼=′ E∗,∗2 . In

other words:

Corollary 5. Let X be as in Theorem 4. Then, the descent spectral sequence for π∗Γ(X,OX) is
isomorphic to the Adams-Novikov spectral sequence.

There are numerous interesting consequences of Corollary 5. For instance:

Proposition 6. Let X be as in Theorem 4. Then, the descent spectral sequence for π∗Γ(X,OX)
degenerates at a finite page with a horizontal vanishing line.

Proof. By Corollary 5, the descent spectral sequence is isomorphic to the Adams-Novikov spec-
tral sequence. Lemma 1 implies that Γ(X,OX) is Ln-local for some n, so the desired result
follows from the smash product theorem, which is equivalent to the statement that the Adams-
Novikov spectral sequence for a Ln-local spectrum degenerates at a finite page with a horizontal
vanishing line. �

In particular, each element in π∗Γ(X,OX) has finite Adams-Novikov filtration, even if X has
infinite cohomological dimension.
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3. G-equivariant Wood equivalences

3.1. A Wood equivalence for KUG. In this section, we prove:

Proposition 7. Let G be a compact abelian Lie group, i.e., a group isomorphic to T ×F where
T is a torus and F is a finitely generated abelian group. There is a G-equivariant equivalence
KOG ∧ Cη ' KUG, where Cη is given the trivial G-action.

It is possible to give a very classical proof of Proposition 7, but we provide an algebro-
geometric proof which will easily generalize to TMF.

We first recall how the spectra KOG and KUG are constructed in spectral algebraic geometry.
Let X denote the derived stack associated to KO, so that the underlying stack is BZ/2, and the

map BZ/2 → MFG classifies the multiplicative formal group Ĝm. This has a degree two finite
étale cover by the scheme SpecZ, which refines to a finite étale cover p : Y = Spec KU→ X.

Let G (resp. Gm) denote the derived p-divisible group defined over X (resp. Y) via the
construction of [Lur18]. Then, the spectrum KOG can be defined as follows (see [Lur09, Section
3.4]): for a G-space X, the cohomology KOG(X) is the global sections of a quasicoherent sheaf
FG(X) defined over the mapping stack Map(G∨,G). Here, G∨ is the Pontryagin dual of G (so
it is a finitely generated abelian group). Similarly, we obtain a definition of KUG(X).

Proof of Proposition 7. We begin by noting that the classical Wood cofiber sequence, stating
that KO ∧ Cη ' KU, translates to the statement that p∗OY ' OX ∧ F(Cη), where F(Cη) is
the sheaf over X associated to Cη. Define YG = Map(G∨,Gm) and XG = Map(G∨,G), and let
pG : YG → XG denote the obvious map of mapping stacks. It follows from the above discussion
that it suffices to prove that there is an equivalence pG∗ OYG

' F(Cη). There is a Cartesian
diagram

YG

pG

��

f ′ // Y

p

��
XG

f
// X.

It follows that

pG∗ OYG
' pG∗ f ′

∗
OY ' f∗p∗OY ' f∗(OX ∧ F(Cη)) ' OXG

∧ f∗F(Cη).

In order to finish the proof, it will therefore suffice to show that f∗F(Cη) ' FG(Cη).
This is true more generally: if X is a finite CW-complex on which G acts trivially, then

FG(X) ' f∗F(X). The proof is by induction on the number of cells. When X = ∗, we know
that FG(∗) = OXG

, in which case the result is obvious. Every G-space with the trivial G-action
is built from the trivial G-orbit G/G = ∗, so the desired result follows from the observation that
FG takes finite homotopy colimits of G-spaces to homotopy limits of quasicoherent sheaves by
[Lur09, Theorem 3.2(2)]. �

The same method of proof holds more generally. Let DA(1) and X3 denote the spectra of
[Mat16]. Then, the same argument shows:

Proposition 8. Let G be a compact abelian Lie group. Then, there is a G-equivariant 2-local
equivalence TMFG ∧DA(1) ' TMF1(3)G, where DA(1) is given the trivial G-action. There is
also a G-equivariant 3-local equivalence TMFG ∧X3 ' TMF1(2)G, where X3 is again given the
trivial G-action.

Remark 9. Let G be a compact Lie group which is possibly nonabelian. If one could construct
derived stacks XG and YG, functors FG, and an analogue of [Lur09, Proposition 3.2], then the



WOOD’S THEOREM (NOTES) 5

same proof would show that Proposition 7 and Proposition 8 are true for every compact Lie
group. We know that Proposition 7 is indeed true for G a general compact Lie group; see, e.g.,
[MNN17, Theorem 9.8]. See [Lur09, Section 5.1] for the case of TMFG.

4. Real Wood equivalences

4.1. A Real Wood equivalence for KUR. Let KUR denote the genuine C2-spectrum given
by Atiyah’s Real K-theory spectrum (see [Ati66]); it is a Borel C2-spectrum whose underlying
spectrum is KU, and whose fixed points (KUR)C2 ' (KUR)hC2 is KO. Let kR denote the
connective cover of KUR; this is a C2-spectrum such that the underlying spectrum kRe is the
connective cover bu of KU, and such that kRC2 is the connective cover of KUC2

R = KO.
The equivalence Cη ' Σ−2CP 2 suggests a natural C2-action on Cη, given by complex conju-

gation. In order to define this precisely, we will need to recall a few things. We will denote by σ
the sign (also known as the reduced regular) representation of C2, and ρ the regular representa-
tion. In the group RO(C2), we have ρ = 1 + σ. If X is a C2-spectrum, we will denote by πp,qX
the RO(C2)-graded homotopy group of X consisting of C2-equivariant maps Sp+qσ → X. The
C2-spectrum Cη̃ is then defined to be the cofiber of an element η̃ ∈ π0,1S

0. This element is a map
Sσ → S0, and is the stable representative of the following unstable map. Let C2 − {0} → CP 1

denote the C2-equivariant map (x, y) 7→ [x : y], where both the source and target are given the
complex conjugation action. Then this map can be identified with the map Sσ+ρ = S1+2σ → Sρ,
so we get a stable map η̃ : Sσ → S0. We then have (see [GHIR17, Proposition 10.12]):

Theorem 10. There is a C2-equivariant equivalence boC2
∧ Cη̃ ' kR.

An easy consequence is the existence of a C2-equivariant equivalence KOC2
∧ Cη̃ ' KUR.

Proof of Theorem 10. We need to show that there is a cofiber sequence ΣσboC2

η̃−→ boC2
→ kR.

On the underlying spectra, this is precisely the statement of Wood’s theorem. We therefore need
to show that the induced composite on C2-fixed points is still a cofiber sequence. By construction,
(boC2

)C2 = bo ∨ bo, and kRC2 = bo. Therefore, it suffices to show that (ΣσboC2
)C2 ' bo, and

that the induced sequence bo→ bo ∨ bo→ bo is a cofiber sequence.
We begin by showing that (ΣσboC2

)C2 = bo. There is a cofiber sequence C2+ → S0 ↪→ Sσ,
so we obtain a cofiber sequence boC2 ∧C2+ → boC2 → ΣσboC2 . Taking C2-fixed points, we get
a cofiber sequence bo→ bo∨bo→ (ΣσboC2

)C2 . The first map, however, is simply the inclusion
of Z into RO(C2) which sends 1 to ρ; this inclusion is split, so we obtain a splitting of the above
cofiber sequence. It follows that (ΣσboC2)C2 = bo, as desired.

It remains to show that the induced composite bo = (ΣσboC2
)C2 → bo ∨ bo = (boC2

)C2 →
bo = kRC2 is a cofiber sequence. The second map bo ∨ bo → bo is simply the fold map ∇, so
it suffices to show that the first map η̃C2 : bo→ bo ∨ bo is given by (k,−k) for some integer k.
To show this, consider the commutative diagram

bo
' //

��

(ΣσboC2
)C2 //

��

(boC2
)C2

��

' // bo ∨ bo

∇
��

Σbo
' // (ΣσboC2

)e // (boC2
)e

' // bo

The map bo → Σbo is zero for dimension reasons, so by commutativity of this diagram, the
horizontal map bo→ bo ∨ bo factors through the fiber of the fold map, which implies that it is
given by (k,−k) for some integer k. �

Remark 11. It is possible to prove this result in terms of the theory of derived stacks described
in the previous section; however, we have elected not to do so since that presentation obscures
the proof.
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Corollary 12. Let CP∞R denote the infinite-dimensional complex projective space with its con-
jugation C2-action. Then, the Atiyah-Hirzebruch spectral sequence computing the C2-equivariant
KOC2

-cohomology of CP∞R degenerates at a finite page.

Proof. The Atiyah-Hirzebruch spectral sequence computing the C2-equivariant KUR-cohomology
of CP∞R collapses at the E2-page, because KUR is Real oriented. A thick subcategory argu-
ment now shows that the Atiyah-Hirzebruch spectral sequence computing the C2-equivariant
KOC2

-cohomology of CP∞R degenerates at a finite page. �

4.2. Cp-equivariant Wood equivalences. Being worked on.
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