WOOD'S THEOREM (NOTES)

This document should be read with care.

1. INTRODUCTION

2. Generalities

Lemma 1. Let $X \to \mathcal{M}_{FG}$ be a flat map from a Noetherian Deligne-Mumford stack which admits an even periodic refinement \mathfrak{X} . Then the \mathbf{E}_{∞} -ring $A = \Gamma(\mathfrak{X}, \mathfrak{O}_{\mathfrak{X}})$ is L_n -local for some n.

Proof. There is a descending sequence of closed substacks of $\mathcal{M}_{\mathrm{FG}}$ given by $\mathcal{M}_{\mathrm{FG}}^{\geq m}$, and each $\mathcal{M}_{\mathrm{FG}}^{\geq m}$ is obtained from $\mathcal{M}_{\mathrm{FG}}^{\geq m-1}$ by taking the substack corresponding to the vanishing locus of a regular element. As X is Noetherian, there is some n such that $X \times_{\mathcal{M}_{\mathrm{FG}}} \mathcal{M}_{\mathrm{FG}}^{\geq n}$ is empty. It suffices to show that if that Spec $B \to X$ is a flat morphism, then the associated Landweber exact spectrum \tilde{B} is E_n -local. Indeed, since $A = \Gamma(\mathfrak{X}, \mathfrak{O}_{\mathfrak{X}})$ is a homotopy limit of $\mathcal{O}_{\mathfrak{X}}(\mathrm{Spec}\, B \to X)$ over all étale maps Spec $B \to X$, it follows from the fact that L_n -local spectra are closed under limits that $\Gamma(\mathfrak{X}, \mathfrak{O}_{\mathfrak{X}})$ is also L_n -local.

We now prove the fact used above, that if that $\operatorname{Spec} B \to X$ is a flat morphism with Ba Noetherian ring, then the associated Landweber exact spectrum \widetilde{B} is E_n -local. Let Z be an E_n -acyclic spectrum, so we obtain an associated quasicoherent sheaf \mathcal{F}_Z on $\mathcal{M}_{\mathrm{FG}}$. Let $f: \operatorname{Spec} B \to X \to \mathcal{M}_{\mathrm{FG}}^{\geq n} \to \mathcal{M}_{\mathrm{FG}}$ be the associated morphism; we need to show that $f^*\mathcal{F}_Z = 0$. It suffices to show that $\mathcal{F}_Z|_{\mathcal{M}_{\mathrm{FG}}^{\geq n}} = 0$. However, the map $g: \operatorname{Spec} \pi_0 E_n \to \mathcal{M}_{\mathrm{FG}}^{\geq n}$ is a faithfully flat cover, so we need to show that $g^*\mathcal{F}_Z = 0$. However, this is immediate since $g^*\mathcal{F}_Z$ is the $\pi_0 E_n$ -module associated to $E_n \wedge Z$, which vanishes since Z is E_n -acyclic. \Box

We note the following consequence:

Proposition 2. Let $X \to \mathcal{M}_p(n)$ be a formally étale map from a Noetherian and separated Deligne-Mumford stack which is of finite type over $\operatorname{Spec} \mathbf{Z}_p$, such that the map $X \to \mathcal{M}_{FG}$ is representable. Let \mathfrak{X} denote the even-periodic Deligne-Mumford stack \mathfrak{X} via [BL10, Theorem 8.1.4]. Let $A = \Gamma(\mathfrak{X}, \mathcal{O}_{\mathfrak{X}})$, so that A is L_n -local by Lemma 1. Then, there is an equivalence

$$L_{K(n)}A \simeq \prod_{x \in X^{[n]}(\overline{\mathbf{F}_p})} E_n^{h\operatorname{Aut}(x) \rtimes \operatorname{Gal}(\overline{\mathbf{F}_p}/\mathbf{F}_p)}.$$

Proof. We begin by proving that if $X^{[n]}$ is the locus of $X \times_{\operatorname{Spec} \mathbf{Z}_p} \operatorname{Spec} \mathbf{F}_p$ where the formal group H over X determined by the map $X \to \mathcal{M}_{\mathrm{FG}}$ has height exactly n, then $X^{[n]}$ is étale over $\operatorname{Spec} \mathbf{F}_p$; in particular, $X^{[n]}$ is zero-dimensional and finite. By our assumptions on X, there is a finite étale cover $f: Y \to X$ of X by a scheme Y. It follows that the map $f': Y^{[n]} \to X^{[n]}$ is also finite étale. Since X is of finite type over $\operatorname{Spec} \mathbf{F}_p$. To prove that Y is of finite type over $\operatorname{Spec} \mathbf{F}_p$, it therefore suffices to prove that the map $Y^{[n]} \to \operatorname{Spec} \mathbf{F}_p$ is étale. Since $Y^{[n]}$ is of finite type over $\operatorname{Spec} \mathbf{F}_p$, it suffices to prove that $Y^{[n]}$ is formally étale over $\operatorname{Spec} \mathbf{F}_p$.

Let $x : \operatorname{Spec} k \to Y$ be a point of Y lying inside the subscheme $Y^{[n]}$, where k is a finite field of characteristic p. This defines a p-divisible group H_x over k, given by the map $\operatorname{Spec} k \to Y \to \mathcal{M}_p(n)$. Since the map $Y \to \mathcal{M}_p(n)$ is formally étale, there is an isomorphism $(X \times_{\operatorname{Spec}} \mathbf{z}_p$ $\operatorname{Spec} \mathbf{F}_p)_x^{\wedge} \cong \operatorname{Spf} k\llbracket u_1, \cdots, u_{n-1} \rrbracket$. The subscheme $(Y^{[n]})_x^{\wedge}$ consists of those deformations of H_x of height exactly n. This implies that u_1, \dots, u_{n-1} must vanish in $(Y^{[n]})_x^{\wedge}$, so $(Y^{[n]})_x^{\wedge} \cong \operatorname{Spec} k$. Since this is étale over $\operatorname{Spec} \mathbf{F}_p$, it follows that $Y^{[n]}$ is formally étale over $\operatorname{Spec} \mathbf{F}_p$, as desired.

Since the map $X \to \mathcal{M}_p(n) \to \mathcal{M}_{FG}$ is representable, we learn that for each $x \in X^{[n]}(\overline{\mathbf{F}_p})$, the automorphism group $\operatorname{Aut}(x)$ injects into the Morava stabilizer group of automorphisms of the associated height *n* formal group. Since *X* is separated, this automorphism group is finite.

We can now prove the proposition. In the case when X is affine, this result can be proved by arguing as in [BL10, Proposition 14.4.6]. The general case is now a formal consequence of descent. By our assumptions on X, there is a finite étale cover $f_0: Y \to X$ of X by an affine scheme $Y = \operatorname{Spec} B_0$. This refines to a finite étale cover $f: \mathcal{Y} \to \mathcal{X}$, where $\mathcal{Y} = \operatorname{Spec} B$ with B an even periodic Noetherian \mathbf{E}_{∞} -ring. It follows that there is an equivalence $A \to \varprojlim \operatorname{Tot}^s B^{\otimes A^{\bullet}}$. Since $B^{\otimes A^{\bullet}} \simeq \Gamma(\mathcal{Y}^{\times_X m}, \mathcal{O}_{\mathcal{Y}^{\times_X m}})$, we learn that $B^{\otimes A^{\bullet}}$ is an even periodic Noetherian \mathbf{E}_{∞} -ring. It follows that there is a K(n)-local equivalence $L_{K(n)}A \to \varprojlim \operatorname{Tot}^s L_{K(n)}B^{\otimes L_{K(n)}A^{\bullet}}$, and each term $L_{K(n)}B^{\otimes L_{K(n)}A^{\bullet}}$ is a wedge of copies of E_n . The desired result now follows from the fact that there is an equivalence $E_n^{hG} \to \varprojlim \operatorname{Tot}^s E_n^{\otimes E_n^{hG^{\bullet}}} \simeq \varprojlim \operatorname{Tot}^s \prod_{q \in G^{\bullet}} E_n$.

The even-periodic derived stack $\mathfrak{B}\mathbf{Z}/2$ defining real K-theory has "finite cohomological dimension", while the same claim is false for the classical stack $B\mathbf{Z}/2$. Making this statement precise involves a discussion of the Adams-Novikov spectral sequence. We begin our discussion with a construction, outlined in [DFHH14, Chapter 9]. The reader should be warned that we will be particularly egregious in implicitly localizing at a prime in this section.

Construction 3. Let R be a p-local homotopy commutative ring spectrum. Define an algebraic stack \mathcal{M}_R over Spec $\mathbf{Z}_{(p)}$ as follows. The stack associated to the Hopf algebroid (MU_{2*}, MU_{2*}MU) is \mathcal{M}_{FG} , so that the global sections functor supplies a symmetric monoidal equivalence between QCoh(\mathcal{M}_{FG}) and the category of evenly graded (MU_{2*}, MU_{2*}MU)-comodules. This is explained in [Nau07, Remark 34]. If R is a p-local homotopy commutative ring spectrum such that MU_{2*}R is an algebra object in evenly graded (MU_{2*}, MU_{2*}MU)-comodules, then MU_{2*}R corresponds to a quasicoherent sheaf $\mathcal{F}(R)$ of algebras on \mathcal{M}_{FG} . Thus, we can define a stack \mathcal{M}_R as the relative spec Spec($\mathcal{F}(R)$) of $\mathcal{F}(R)$; explicitly,

$$\mathcal{M}_R = \operatorname{colim}_{\Delta^{op}} \operatorname{Spec} \mathcal{F}(R)(\mathrm{MU}^{\wedge \bullet + 1}) / \mathbf{G}_m = \operatorname{colim}_{\Delta^{op}} \operatorname{Spec} \pi_*(\mathrm{MU}^{\wedge \bullet + 1} \wedge R) / \mathbf{G}_m,$$

where the \mathbf{G}_m -action enforces the grading.

Theorem 4. Assume that $X \to \mathcal{M}_{FG}$ is a flat and affine map from a Noetherian and locally separated Deligne-Mumford stack X such that X refines to an even periodic derived Deligne-Mumford stack X. Let $E = \Gamma(X, \mathcal{O}_X)$ denote its global sections. Then \mathcal{M}_E can be identified with the underlying ordinary Deligne-Mumford stack X.

Proof. There is a flat covering map $\mathcal{M}_{\mathrm{FG}}^{\mathrm{coord}} = \operatorname{Spec} L \to \mathcal{M}_{\mathrm{FG}}$. Since $X \to \mathcal{M}_{\mathrm{FG}}$ is an affine morphism, the pullback $X^{\mathrm{coord}} = \mathcal{M}_{\mathrm{FG}}^{\mathrm{coord}} \times_{\mathcal{M}_{\mathrm{FG}}} X$ is an affine scheme, and the morphism $p: X^{\mathrm{coord}} \to X$ is a flat and affine cover of X. Let us first show that for any étale cover $\operatorname{Spec} A \to X$, there is natural isomorphism

(1)
$$\pi_*(\mathcal{O}_{\mathfrak{X}}(\operatorname{Spec} A) \otimes \operatorname{MUP}) \cong (p_*p^*\pi_*\mathcal{O}_{\mathfrak{X}})(\operatorname{Spec} A).$$

There is a commutative diagram, where the square is a pullback:

Since \mathfrak{X} is an even periodic refinement of $X \to \mathfrak{M}_{FG}$, we have identifications

$$\pi_*(\mathcal{O}_{\mathfrak{X}}(\operatorname{Spec} A) \otimes \operatorname{MUP}) = \operatorname{MUP}_*(\mathcal{O}_{\mathfrak{X}}(\operatorname{Spec} A)) = (q_*\omega^{\otimes *})(\operatorname{Spec} A)$$
$$\cong (\pi_*\mathcal{O}_{\mathfrak{X}})(\operatorname{Spec} A \times_{\mathcal{M}_{\mathrm{FG}}} X^{\operatorname{coord}}) = (p_*p^*\pi_*\mathcal{O}_{\mathfrak{X}})(\operatorname{Spec} A).$$

Equation (1) implies that $\pi_*(\mathcal{O}_{\mathfrak{X}} \otimes \mathrm{MUP}) \simeq p_*p^*\pi_*\mathcal{O}_{\mathfrak{X}}$. There is a descent spectral sequence

$$\mathrm{H}^*(X; \pi_*(\mathcal{O}_{\mathfrak{X}} \otimes \mathrm{MUP})) \Rightarrow \pi_*(E \otimes \mathrm{MUP}).$$

Since $X \to \mathcal{M}_{FG}$ is affine, the main result of [MM15] implies that $\Gamma(\mathcal{O}_{\mathcal{X}} \otimes MUP) = E \otimes MUP$. There is therefore an isomorphism $\mathrm{H}^*(X; p_*p^*(\pi_*\mathcal{O}_{\mathcal{X}})) \cong \mathrm{H}^*(X; \pi_*(\mathcal{O}_{\mathcal{X}} \otimes MUP))$. The map p is affine, so the Leray spectral sequence degenerates to give an isomorphism

$$\mathrm{H}^{s}(X; p_{*}p^{*}(\pi_{*}\mathcal{O}_{\mathfrak{X}})) \simeq \mathrm{H}^{s}(X^{\mathrm{coord}}; p^{*}(\pi_{*}\mathcal{O}_{\mathfrak{X}})) \cong \begin{cases} \Gamma(X^{\mathrm{coord}}; p^{*}\pi_{*}\mathcal{O}_{\mathfrak{X}}) & \text{if } s = 0\\ 0 & \text{else.} \end{cases}$$

We conclude that $\Gamma(X^{\text{coord}}; p^*\pi_*\mathcal{O}_{\mathfrak{X}}) \simeq \pi_*(E \otimes \text{MUP})$. By running the same argument with X^{coord} replaced by $(\mathcal{M}_{\text{FG}}^{\text{coord}})^{\times_{\mathcal{M}_{\text{FG}}}\bullet} \times_{\mathcal{M}_{\text{FG}}} X = (X^{\text{coord}})^{\times_{X}\bullet}$, we learn that $\Gamma((X^{\text{coord}})^{\times_{X}\bullet}; p^*\pi_*\mathcal{O}_{\mathfrak{X}}) \simeq \pi_*(E \otimes \text{MUP}^{\bullet})$. This implies that the Hopf algebroid

$$E_*(MUP) \Longrightarrow E_*(MUP \otimes MUP) \Longrightarrow \cdots$$

is exactly the presentation of X via the flat cover $X^{\text{coord}} \to X$; but this is precisely the definition of \mathcal{M}_E .

Theorem 4 provides another proof of one the main results of [Ban14]. Let \mathcal{X} be as in Theorem 4. Recall that the descent spectral sequence runs

$$E_2^{*,*} = \mathrm{H}^*(X; \pi_* \mathcal{O}_{\mathfrak{X}}) \Rightarrow \pi_* \Gamma(\mathfrak{X}, \mathcal{O}_{\mathfrak{X}}).$$

There is also an Adams-Novikov spectral sequence

$${}^{\prime}E_{2}^{*,*} = \operatorname{Ext}_{\operatorname{MUP}_{*}\operatorname{MUP}}^{*}(\operatorname{MUP}_{*}, \Sigma^{*}\operatorname{MUP}_{*}(\Gamma(\mathfrak{X}, \mathcal{O}_{\mathfrak{X}}))) \cong \operatorname{H}^{*}(\mathcal{M}_{E}; \pi_{*}\mathcal{O}_{\mathfrak{X}}) \Rightarrow \pi_{*}\Gamma(\mathfrak{X}, \mathcal{O}_{\mathfrak{X}}).$$

It follows from Theorem 4 that there is an isomorphism of spectral sequences $E_2^{*,*} \cong' E_2^{*,*}$. In other words:

Corollary 5. Let \mathfrak{X} be as in Theorem 4. Then, the descent spectral sequence for $\pi_*\Gamma(\mathfrak{X}, \mathfrak{O}_{\mathfrak{X}})$ is isomorphic to the Adams-Novikov spectral sequence.

There are numerous interesting consequences of Corollary 5. For instance:

Proposition 6. Let \mathfrak{X} be as in Theorem 4. Then, the descent spectral sequence for $\pi_*\Gamma(\mathfrak{X}, \mathfrak{O}_{\mathfrak{X}})$ degenerates at a finite page with a horizontal vanishing line.

Proof. By Corollary 5, the descent spectral sequence is isomorphic to the Adams-Novikov spectral sequence. Lemma 1 implies that $\Gamma(\mathfrak{X}, \mathcal{O}_{\mathfrak{X}})$ is L_n -local for some n, so the desired result follows from the smash product theorem, which is equivalent to the statement that the Adams-Novikov spectral sequence for a L_n -local spectrum degenerates at a finite page with a horizontal vanishing line.

In particular, each element in $\pi_*\Gamma(\mathfrak{X}, \mathfrak{O}_{\mathfrak{X}})$ has finite Adams-Novikov filtration, even if \mathfrak{X} has infinite cohomological dimension.

WOOD'S THEOREM (NOTES)

3. G-Equivariant Wood equivalences

3.1. A Wood equivalence for KU_G . In this section, we prove:

Proposition 7. Let G be a compact abelian Lie group, i.e., a group isomorphic to $T \times F$ where T is a torus and F is a finitely generated abelian group. There is a G-equivariant equivalence $KO_G \wedge C\eta \simeq KU_G$, where $C\eta$ is given the trivial G-action.

It is possible to give a very classical proof of Proposition 7, but we provide an algebrogeometric proof which will easily generalize to TMF.

We first recall how the spectra KO_G and KU_G are constructed in spectral algebraic geometry. Let \mathfrak{X} denote the derived stack associated to KO, so that the underlying stack is $B\mathbf{Z}/2$, and the map $B\mathbf{Z}/2 \to \mathcal{M}_{\mathrm{FG}}$ classifies the multiplicative formal group $\widehat{\mathbf{G}_m}$. This has a degree two finite étale cover by the scheme Spec \mathbf{Z} , which refines to a finite étale cover $p: \mathfrak{Y} = \mathrm{Spec } \mathrm{KU} \to \mathfrak{X}$.

Let **G** (resp. \mathbf{G}_m) denote the derived *p*-divisible group defined over \mathfrak{X} (resp. \mathfrak{Y}) via the construction of [Lur18]. Then, the spectrum KO_G can be defined as follows (see [Lur09, Section 3.4]): for a *G*-space *X*, the cohomology $\mathrm{KO}_G(X)$ is the global sections of a quasicoherent sheaf $\mathcal{F}_G(X)$ defined over the mapping stack $\mathrm{Map}(G^{\vee}, \mathbf{G})$. Here, G^{\vee} is the Pontryagin dual of *G* (so it is a finitely generated abelian group). Similarly, we obtain a definition of $\mathrm{KU}_G(X)$.

Proof of Proposition 7. We begin by noting that the classical Wood cofiber sequence, stating that KO $\wedge C\eta \simeq$ KU, translates to the statement that $p_*\mathcal{O}_{\mathcal{Y}} \simeq \mathcal{O}_{\mathcal{X}} \wedge \mathcal{F}(C\eta)$, where $\mathcal{F}(C\eta)$ is the sheaf over \mathcal{X} associated to $C\eta$. Define $\mathcal{Y}_G = \operatorname{Map}(G^{\vee}, \mathbf{G}_m)$ and $\mathcal{X}_G = \operatorname{Map}(G^{\vee}, \mathbf{G})$, and let $p^G: \mathcal{Y}_G \to \mathcal{X}_G$ denote the obvious map of mapping stacks. It follows from the above discussion that it suffices to prove that there is an equivalence $p^G_*\mathcal{O}_{\mathcal{Y}_G} \simeq \mathcal{F}(C\eta)$. There is a Cartesian diagram

It follows that

$$p^G_* \mathfrak{O}_{\mathfrak{Y}_G} \simeq p^G_* f'^* \mathfrak{O}_{\mathfrak{Y}} \simeq f^* p_* \mathfrak{O}_{\mathfrak{Y}} \simeq f^* (\mathfrak{O}_{\mathfrak{X}} \wedge \mathfrak{F}(C\eta)) \simeq \mathfrak{O}_{\mathfrak{X}_G} \wedge f^* \mathfrak{F}(C\eta).$$

In order to finish the proof, it will therefore suffice to show that $f^* \mathcal{F}(C\eta) \simeq \mathcal{F}_G(C\eta)$.

This is true more generally: if X is a finite CW-complex on which G acts trivially, then $\mathcal{F}_G(X) \simeq f^* \mathcal{F}(X)$. The proof is by induction on the number of cells. When X = *, we know that $\mathcal{F}_G(*) = \mathcal{O}_{X_G}$, in which case the result is obvious. Every G-space with the trivial G-action is built from the trivial G-orbit G/G = *, so the desired result follows from the observation that \mathcal{F}_G takes finite homotopy colimits of G-spaces to homotopy limits of quasicoherent sheaves by [Lur09, Theorem 3.2(2)].

The same method of proof holds more generally. Let DA(1) and X_3 denote the spectra of [Mat16]. Then, the same argument shows:

Proposition 8. Let G be a compact abelian Lie group. Then, there is a G-equivariant 2-local equivalence $\text{TMF}_G \wedge DA(1) \simeq \text{TMF}_1(3)_G$, where DA(1) is given the trivial G-action. There is also a G-equivariant 3-local equivalence $\text{TMF}_G \wedge X_3 \simeq \text{TMF}_1(2)_G$, where X_3 is again given the trivial G-action.

Remark 9. Let G be a compact Lie group which is possibly nonabelian. If one could construct derived stacks X_G and \mathcal{Y}_G , functors \mathcal{F}_G , and an analogue of [Lur09, Proposition 3.2], then the

same proof would show that Proposition 7 and Proposition 8 are true for every compact Lie group. We know that Proposition 7 is indeed true for G a general compact Lie group; see, e.g., [MNN17, Theorem 9.8]. See [Lur09, Section 5.1] for the case of TMF_G .

4. Real Wood equivalences

4.1. A Real Wood equivalence for KU_R. Let KU_R denote the genuine C_2 -spectrum given by Atiyah's Real K-theory spectrum (see [Ati66]); it is a Borel C_2 -spectrum whose underlying spectrum is KU, and whose fixed points $(KU_R)^{C_2} \simeq (KU_R)^{hC_2}$ is KO. Let $k\mathbf{R}$ denote the connective cover of KU_R; this is a C_2 -spectrum such that the underlying spectrum $k\mathbf{R}^e$ is the connective cover bu of KU, and such that $k\mathbf{R}^{C_2}$ is the connective cover of $KU_{\mathbf{R}}^{C_2} = KO$. The equivalence $C\eta \simeq \Sigma^{-2}\mathbf{C}P^2$ suggests a natural C_2 -action on $C\eta$, given by complex conju-

The equivalence $C\eta \simeq \Sigma^{-2} \mathbb{C}P^2$ suggests a natural C_2 -action on $C\eta$, given by complex conjugation. In order to define this precisely, we will need to recall a few things. We will denote by σ the sign (also known as the reduced regular) representation of C_2 , and ρ the regular representation. In the group $RO(C_2)$, we have $\rho = 1 + \sigma$. If X is a C_2 -spectrum, we will denote by $\pi_{p,q}X$ the $RO(C_2)$ -graded homotopy group of X consisting of C_2 -equivariant maps $S^{p+q\sigma} \to X$. The C_2 -spectrum $C\tilde{\eta}$ is then defined to be the cofiber of an element $\tilde{\eta} \in \pi_{0,1}S^0$. This element is a map $S^{\sigma} \to S^0$, and is the stable representative of the following unstable map. Let $\mathbb{C}^2 - \{0\} \to \mathbb{C}P^1$ denote the C_2 -equivariant map $(x, y) \mapsto [x : y]$, where both the source and target are given the complex conjugation action. Then this map can be identified with the map $S^{\sigma+\rho} = S^{1+2\sigma} \to S^{\rho}$, so we get a stable map $\tilde{\eta} : S^{\sigma} \to S^0$. We then have (see [GHIR17, Proposition 10.12]):

Theorem 10. There is a C_2 -equivariant equivalence $bo_{C_2} \wedge C\tilde{\eta} \simeq k\mathbf{R}$.

An easy consequence is the existence of a C_2 -equivariant equivalence $\mathrm{KO}_{C_2} \wedge C\widetilde{\eta} \simeq \mathrm{KU}_{\mathbf{R}}$.

Proof of Theorem 10. We need to show that there is a cofiber sequence $\Sigma^{\sigma} \operatorname{bo}_{C_2} \xrightarrow{\eta} \operatorname{bo}_{C_2} \to k\mathbf{R}$. On the underlying spectra, this is precisely the statement of Wood's theorem. We therefore need to show that the induced composite on C_2 -fixed points is still a cofiber sequence. By construction, $(\operatorname{bo}_{C_2})^{C_2} = \operatorname{bo} \lor \operatorname{bo}$, and $k\mathbf{R}^{C_2} = \operatorname{bo}$. Therefore, it suffices to show that $(\Sigma^{\sigma}\operatorname{bo}_{C_2})^{C_2} \simeq \operatorname{bo}$, and that the induced sequence $\operatorname{bo} \to \operatorname{bo} \lor \operatorname{bo} \to \operatorname{bo}$ is a cofiber sequence.

We begin by showing that $(\Sigma^{\sigma} \operatorname{bo}_{C_2})^{C_2} = \operatorname{bo.}$ There is a cofiber sequence $C_{2+} \to S^0 \hookrightarrow S^{\sigma}$, so we obtain a cofiber sequence $\operatorname{bo}_{C_2} \wedge C_{2+} \to \operatorname{bo}_{C_2} \to \Sigma^{\sigma} \operatorname{bo}_{C_2}$. Taking C_2 -fixed points, we get a cofiber sequence $\operatorname{bo} \to \operatorname{bo} \lor \operatorname{bo} \to (\Sigma^{\sigma} \operatorname{bo}_{C_2})^{C_2}$. The first map, however, is simply the inclusion of \mathbf{Z} into $RO(C_2)$ which sends 1 to ρ ; this inclusion is split, so we obtain a splitting of the above cofiber sequence. It follows that $(\Sigma^{\sigma} \operatorname{bo}_{C_2})^{C_2} = \operatorname{bo}$, as desired.

It remains to show that the induced composite $bo = (\Sigma^{\sigma}bo_{C_2})^{C_2} \rightarrow bo \lor bo = (bo_{C_2})^{C_2} \rightarrow bo = k \mathbf{R}^{C_2}$ is a cofiber sequence. The second map $bo \lor bo \rightarrow bo$ is simply the fold map ∇ , so it suffices to show that the first map $\tilde{\eta}^{C_2}$: $bo \rightarrow bo \lor bo$ is given by (k, -k) for some integer k. To show this, consider the commutative diagram

The map bo $\rightarrow \Sigma$ bo is zero for dimension reasons, so by commutativity of this diagram, the horizontal map bo \rightarrow bo \vee bo factors through the fiber of the fold map, which implies that it is given by (k, -k) for some integer k.

Remark 11. It is possible to prove this result in terms of the theory of derived stacks described in the previous section; however, we have elected not to do so since that presentation obscures the proof. **Corollary 12.** Let $\mathbb{CP}_{\mathbb{R}}^{\infty}$ denote the infinite-dimensional complex projective space with its conjugation C_2 -action. Then, the Atiyah-Hirzebruch spectral sequence computing the C_2 -equivariant KO_{C_2} -cohomology of $\mathbb{CP}_{\mathbb{R}}^{\infty}$ degenerates at a finite page.

Proof. The Atiyah-Hirzebruch spectral sequence computing the C_2 -equivariant KU_R-cohomology of $\mathbb{C}P_{\mathbb{R}}^{\infty}$ collapses at the E_2 -page, because KU_R is Real oriented. A thick subcategory argument now shows that the Atiyah-Hirzebruch spectral sequence computing the C_2 -equivariant KO_{C2}-cohomology of $\mathbb{C}P_{\mathbb{R}}^{\infty}$ degenerates at a finite page.

4.2. C_p -equivariant Wood equivalences. Being worked on.

References

- [Ati66] M. Atiyah. K-theory and reality. Quart. J. Math. Oxford Ser. (2), 17:367–386, 1966.
- [Ban14] R. Banerjee. A modular description of ER(2). New York J. Math., 20:743–758, 2014.
- [BL10] M. Behrens and T. Lawson. Topological Automorphic forms, volume 204 of Mem. Amer. Math. Soc. American Mathematical Society, 2010.
- [DFHH14] C. Douglas, J. Francis, A. Henriques, and M. Hill. Topological Modular Forms, volume 201 of Mathematical Surveys and Monographs. American Mathematical Society, 2014.
- [GHIR17] B. Guillou, M. Hill, D. Isaksen, and D. Ravenel. The cohomology of C₂-equivariant A(1) and the homotopy of ko_{C2}. https://arxiv.org/abs/1708.09568, 2017.
- [Lur09] J. Lurie. A survey of elliptic cohomology. In Algebraic Topology, volume 4 of Abel. Symp., pages 219–277. Springer, 2009.
- [Lur18] J. Lurie. Elliptic Cohomology II, 2018.
- [Mat16] A. Mathew. The homology of tmf. Homology Homotopy Appl., 18(2):1–20, 2016.
- [MM15] A. Mathew and L. Meier. Affineness and chromatic homotopy theory. J. Topol., 8(2):476–528, 2015.
- [MNN17] A. Mathew, N. Naumann, and J. Noel. Nilpotence and descent in equivariant stable homotopy theory. Adv. Math., 305:994–1084, 2017.
- [Nau07] N. Naumann. The stack of formal groups in stable homotopy theory. Adv. Math., 215(2):569–600, 2007.